找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Analysis; J. D. Murray Textbook 1984 Springer Science+Business Media New York 1984 Approximation.Asymptotische Darstellung.Diff

[復(fù)制鏈接]
樓主: 萌芽的心
31#
發(fā)表于 2025-3-26 23:10:29 | 只看該作者
Foundations of Differential Calculusthe asymptotic nature of the resulting series again depends on the estimation of an integral remainder (see, for example, §1.1 exercise 9). A survey of these methods, presented by way of specific examples, is given in the book by Copson (1965).
32#
發(fā)表于 2025-3-27 04:13:31 | 只看該作者
33#
發(fā)表于 2025-3-27 09:16:57 | 只看該作者
Singular perturbation methods,he solutions which cannot be found by classical methods. A fundamental property of nonlinear problems that we shall be interested in is that the main features of the solutions are not contained in the linearized problem as we see in §7.2 below.
34#
發(fā)表于 2025-3-27 09:48:40 | 只看該作者
Textbook 1984icularly prized in the applications of mathematics. The book presents a balanced view of the methods and their usefulness: integrals on the real line and in the complex plane which arise in different contexts, and solutions of differential equations not expressible as integrals. Murray includes both
35#
發(fā)表于 2025-3-27 17:04:29 | 只看該作者
36#
發(fā)表于 2025-3-27 21:31:27 | 只看該作者
On the Infinite and the Infinitely Small,he solutions which cannot be found by classical methods. A fundamental property of nonlinear problems that we shall be interested in is that the main features of the solutions are not contained in the linearized problem as we see in §7.2 below.
37#
發(fā)表于 2025-3-28 00:15:15 | 只看該作者
Einleitung, für sozialwissenschaftliche und insbesondere sozialp?dagogische Problemstellungen ad?quate Analyse- und Steuerungsinstrumente darstellen. Diese Programme sind mir durch die Forschungsgruppe COBASC — Computer Based Analysis of Social Complexity — um Klüver n?her gebracht worden, die sich seit Jahren
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 16:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太白县| 蒙阴县| 泽普县| 潞城市| 麻江县| 平阳县| 应城市| 南京市| 安仁县| 龙里县| 凤阳县| 千阳县| 邹城市| 涡阳县| 神木县| 广昌县| 乡城县| 呼和浩特市| 扎赉特旗| 宁强县| 建湖县| 张家界市| 额尔古纳市| 泽库县| 长治市| 东丰县| 淳安县| 莱芜市| 深圳市| 武冈市| 鹿邑县| 钟山县| 孟连| 民丰县| 太谷县| 宝应县| 屏山县| 潮安县| 德庆县| 邛崃市| 黄石市|