找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Lecture Notes on the General Theory of Relativity; From Newton’s Attrac ?yvind Gr?n Textbook 20091st edition Springer-Verlag New York 2009

[復(fù)制鏈接]
樓主: 異國(guó)
11#
發(fā)表于 2025-3-23 13:08:48 | 只看該作者
12#
發(fā)表于 2025-3-23 15:26:09 | 只看該作者
13#
發(fā)表于 2025-3-23 21:32:06 | 只看該作者
Covariant Differentiation,We must have a method of differentiation that maintains the anti-symmetry, thus making sure that what we end up with after differentiation is still a form.
14#
發(fā)表于 2025-3-24 01:10:38 | 只看該作者
Curvature,The covariant directional derivative of a vector field . along a vector . was defined and interpreted geometrically in Sect. 5.2, as follows.
15#
發(fā)表于 2025-3-24 04:38:03 | 只看該作者
,Einstein’s Field Equations,Energy–momentum conservation for a Newtonian fluid in terms of the divergence of the energy momentum tensor can be shown as follows.
16#
發(fā)表于 2025-3-24 08:16:18 | 只看該作者
The Schwarzschild Spacetime,This is a solution of the vacuum field equations . for a static spherically symmetric spacetime. One can then . the following form of the line element (employing units so that c=1):
17#
發(fā)表于 2025-3-24 12:32:45 | 只看該作者
Black Holes,Surface gravity is denoted by . and is defined by where . is the horizon radius, . for the Schwarzschild spacetime, . is the time component of the 4-velocity. The 4-velocity of a free particle instantaneously at rest in the Schwarzschild spacetime: The only component of the 4-acceleration different from zero is .
18#
發(fā)表于 2025-3-24 18:14:37 | 只看該作者
19#
發(fā)表于 2025-3-24 20:36:57 | 只看該作者
,Newton’s Law of Universal Gravitation,ties, i.e. velocities much smaller than the velocity of light and “weak” fields. Weak fields are fields in which the gravitational potential energy of a test particle is very small compared to its rest mass energy. (Note that here one is interested only in the absolute values of the above quantities
20#
發(fā)表于 2025-3-24 23:28:49 | 只看該作者
Cosmology,s reference particles. Then we introduce a “comoving coordinate system” in this frame of reference with spatial coordinates χ, θ φ. We use time measured on standard clocks carried by the galactic clusters as coordinate time (cosmic time).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 21:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
许昌市| 江永县| 湄潭县| 云浮市| 乃东县| 太谷县| 绥江县| 丹江口市| 开江县| 沈阳市| 汝阳县| 尼木县| 中山市| 富阳市| 杭锦后旗| 健康| 台江县| 周口市| 安庆市| 天祝| 海晏县| 桓台县| 阜康市| 南丰县| 景东| 梁平县| 隆回县| 高阳县| 连江县| 杭锦后旗| 扬中市| 马尔康县| 济南市| 准格尔旗| 兴仁县| 崇明县| 涟源市| 花垣县| 仁寿县| 囊谦县| 右玉县|