找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Associative Digital Network Theory; An Associative Algeb Nico F. Benschop Book Apr 2009Latest edition Springer Science+Business Media B.V.

[復(fù)制鏈接]
樓主: FARCE
41#
發(fā)表于 2025-3-28 17:00:32 | 只看該作者
https://doi.org/10.1007/3-540-36135-9idues mod .. with ‘carry’ .<.. of weight .. yields a Euclidean prime sieve for integers. Failure of Goldbach’s Conjecture?(.) for some 2. contradicts .(.) for some?., yielding?.: Each 2.>4 is the sum of two odd primes.
42#
發(fā)表于 2025-3-28 21:53:29 | 只看該作者
43#
發(fā)表于 2025-3-29 01:07:06 | 只看該作者
Simple Semigroups and the Five Basic Machines,ch input and input-sequence maps the state set onto the same number of next states. CR-machines are analysed by their sequential closure (semigroup), which is shown to be a ., that is: a semi-direct product .?|>(.×.) of a left- and a right-copy semigroup, and a group. So in general a CR-machine is a
44#
發(fā)表于 2025-3-29 06:18:20 | 只看該作者
45#
發(fā)表于 2025-3-29 10:46:27 | 只看該作者
46#
發(fā)表于 2025-3-29 13:06:34 | 只看該作者
47#
發(fā)表于 2025-3-29 19:25:59 | 只看該作者
48#
發(fā)表于 2025-3-29 21:47:19 | 只看該作者
,Fermat’s Small Theorem Extended to?,,mod?,,,. are shown to have distinct .. mod .., and divisors . of .?1 (resp. .+1) with different primesets have distinct .. mod ... Moreover 2.?2 ?mod .. for prime?., related to . primes (Wieferich in J. Reine Angew. Math. 136:293–302, .) and . case. for integers (Chap.?8). .: Some .|.±1 is semi primitive r
49#
發(fā)表于 2025-3-30 02:16:54 | 只看該作者
50#
發(fā)表于 2025-3-30 05:32:32 | 只看該作者
,Additive Structure of ,(.) mod ,, (Squarefree) and Goldbach’s Conjecture, All primes between .. and .. are in the group .. of units in semigroup?. of multiplication mod?... Due to its squarefree modulus . is a disjoint union of 2. groups, with as many idempotents—one per divisor of?.., which form a Boolean lattice .. The . properties of . and its lattice are studied. It
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 23:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湘西| 邵阳县| 绥江县| 会理县| 桐城市| 威远县| 麻江县| 黎城县| 盐津县| 武胜县| 名山县| 蓝山县| 道真| 龙门县| 屏东市| 岱山县| 安达市| 济南市| 尉犁县| 应用必备| 西藏| 普安县| 凤城市| 即墨市| 应城市| 磴口县| 阿克苏市| 松阳县| 闵行区| 牙克石市| 四平市| 灌南县| 枣阳市| 林甸县| 峨眉山市| 阿拉善右旗| 铜陵市| 博乐市| 周至县| 察雅县| 黔江区|