找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Aspects of Differential Geometry III; Esteban Calvi?o-Louzao,Eduardo García-Río,JeongHye Book 2017 Springer Nature Switzerland AG 2017

[復(fù)制鏈接]
查看: 29489|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:01:04 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Aspects of Differential Geometry III
影響因子2023Esteban Calvi?o-Louzao,Eduardo García-Río,JeongHye
視頻videohttp://file.papertrans.cn/164/163063/163063.mp4
學(xué)科分類Synthesis Lectures on Mathematics & Statistics
圖書封面Titlebook: Aspects of Differential Geometry III;  Esteban Calvi?o-Louzao,Eduardo García-Río,JeongHye Book 2017 Springer Nature Switzerland AG 2017
影響因子Differential Geometry is a wide field. We have chosen to concentrate upon certain aspects that are appropriate for an introduction to the subject; we have not attempted an encyclopedic treatment. Book III is aimed at the first-year graduate level but is certainly accessible to advanced undergraduates. It deals with invariance theory and discusses invariants both of Weyl and not of Weyl type; the Chern?Gauss?Bonnet formula is treated from this point of view. Homothety homogeneity, local homogeneity, stability theorems, and Walker geometry are discussed. Ricci solitons are presented in the contexts of Riemannian, Lorentzian, and affine geometry.
Pindex Book 2017
The information of publication is updating

書目名稱Aspects of Differential Geometry III影響因子(影響力)




書目名稱Aspects of Differential Geometry III影響因子(影響力)學(xué)科排名




書目名稱Aspects of Differential Geometry III網(wǎng)絡(luò)公開度




書目名稱Aspects of Differential Geometry III網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Aspects of Differential Geometry III被引頻次




書目名稱Aspects of Differential Geometry III被引頻次學(xué)科排名




書目名稱Aspects of Differential Geometry III年度引用




書目名稱Aspects of Differential Geometry III年度引用學(xué)科排名




書目名稱Aspects of Differential Geometry III讀者反饋




書目名稱Aspects of Differential Geometry III讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:26:10 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:06:33 | 只看該作者
Homothety Homogeneity and Local Homogeneity,f Lorentzian Walker manifolds. We determine which elements of the family are 0-curvature homogeneous, which are 1-curvature homogeneous, and which are 2-curvature homogeneous; for this family, 2-curvature homogeneity will in fact imply local homogeneity. A similar analysis of homothety curvature hom
地板
發(fā)表于 2025-3-22 07:42:09 | 只看該作者
FM Global Reduced-Commodity Testing,er–Lagrange equations defined by Chern forms which generalize the corresponding Euler–Lagrange equations for the Pfaffian discussed previously. In Section 9.5, we give some examples of . (VSI) manifolds; these are pseudo-Riemannian manifolds all of whose scalar Weyl invariants vanish. We also develo
5#
發(fā)表于 2025-3-22 09:00:24 | 只看該作者
,SN 1987A und unsere n?chste Supernova,f Lorentzian Walker manifolds. We determine which elements of the family are 0-curvature homogeneous, which are 1-curvature homogeneous, and which are 2-curvature homogeneous; for this family, 2-curvature homogeneity will in fact imply local homogeneity. A similar analysis of homothety curvature hom
6#
發(fā)表于 2025-3-22 16:38:58 | 只看該作者
7#
發(fā)表于 2025-3-22 18:05:43 | 只看該作者
Homothety Homogeneity and Local Homogeneity,omothety homogeneity. Let . be a homothety homogeneity manifold which has non-trivial homotethy character, i.e., which admits a diffeomorphism ? so ?*g = λ.g for λ. ≠ 1. In Section 10.1, we show that if . is not VSI, then . is not homogeneous and present other foundational material. In Section 10.2,
8#
發(fā)表于 2025-3-22 22:16:43 | 只看該作者
9#
發(fā)表于 2025-3-23 03:07:10 | 只看該作者
10#
發(fā)表于 2025-3-23 06:45:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沅陵县| 新邵县| 宁陵县| 安岳县| 融水| 徐水县| 沁源县| 阿拉善右旗| 垫江县| 阆中市| 彭阳县| 崇文区| 杭州市| 双江| 布尔津县| 焉耆| 明溪县| 德惠市| 井陉县| 台山市| 永安市| 镇雄县| 即墨市| 顺平县| 瑞昌市| 玉龙| 新蔡县| 行唐县| 望奎县| 陆良县| 湖州市| 那曲县| 北安市| 南充市| 昂仁县| 仁布县| 喀什市| 澎湖县| 曲阳县| 阜新| 昭通市|