找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks - ICANN 96; 6th International Co Christoph Malsburg,Werner Seelen,Bernhard Sendhoff Conference proceedings 1996

[復(fù)制鏈接]
樓主: Gullet
31#
發(fā)表于 2025-3-26 21:52:13 | 只看該作者
J. Ronald Gonterman,M. A. Weinsteinion and function approximation. This network type is best suited for a hardware implementation and special VLSI chips are available which are used in fast trigger processors. Also discussed are self-organizing networks for the recognition of features in large data samples. Neural net algorithms like
32#
發(fā)表于 2025-3-27 04:39:24 | 只看該作者
Fibers for Protective Textiles,opfield-type associative memories, the proposed encoding method computes the connection weight between two neurons by summing up not only the products of the corresponding two bits of all fundamental memories but also the products of their neighboring bits. Theoretical results concerning stability a
33#
發(fā)表于 2025-3-27 06:22:13 | 只看該作者
Fibonacci Numbers and Search Theory,y with the number of inputs per neuron is far greater than the linear growth in the famous Hopfield network [2]. This paper shows that the GNU attains an even higher capacity with the use of pyramids of neurons instead of single neurons as its nodes. The paper also shows that the storage capacity/co
34#
發(fā)表于 2025-3-27 10:54:34 | 只看該作者
Fibonacci Numbers and Search Theory,rk with high information efficiency, but only if the patterns to be stored are extremely sparse. In this paper we report how the efficiency of the net can be improved for more dense coding rates by using a partially-connected net. The information efficiency can be maintained at a high level over a 2
35#
發(fā)表于 2025-3-27 13:40:05 | 只看該作者
Measuring Areas of Rectangular Fields,r, so far there existed no way of adding knowledge about invariances of a classification problem at hand. We present a method of incorporating prior knowledge about transformation invariances by applying transformations to support vectors, the training examples most critical for determining the clas
36#
發(fā)表于 2025-3-27 21:26:02 | 只看該作者
Dividing Fields Among Partners,timation of a confidence value for a certain object. This reveals how trustworthy the classification of the particular object by the neural pattern classifier is. Even for badly trained networks it is possible to give reliable confidence estimations. Several estimators are considered. A .-NN techniq
37#
發(fā)表于 2025-3-27 22:53:07 | 只看該作者
38#
發(fā)表于 2025-3-28 04:52:09 | 只看該作者
Fibonacci‘s De Practica Geometrietionally prohibitive, as all training data need to be stored and each individual training vector gives rise to a new term of the estimate. Given an original training sample of size . in a .-dimensional space, a simple binned kernel estimate with .+4) terms can be shown to attain an estimation accura
39#
發(fā)表于 2025-3-28 07:00:57 | 只看該作者
40#
發(fā)表于 2025-3-28 13:50:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 04:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
治多县| 平罗县| 建昌县| 浪卡子县| 澎湖县| 东阿县| 信宜市| 平泉县| 宁乡县| 华容县| 遂宁市| 贞丰县| 平谷区| 宁晋县| 温泉县| 双桥区| 郯城县| 四子王旗| 鄂温| 如东县| 南开区| 来宾市| 莱阳市| 工布江达县| 石阡县| 巴林左旗| 若尔盖县| 固始县| 峨边| 东台市| 保山市| 南乐县| 瓮安县| 海林市| 稻城县| 永济市| 遂宁市| 巴南区| 永修县| 邹城市| 正阳县|