找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks - ICANN 2010; 20th International C Konstantinos Diamantaras,Wlodek Duch,Lazaros S. Il Conference proceedings 201

[復(fù)制鏈接]
查看: 17806|回復(fù): 63
樓主
發(fā)表于 2025-3-21 16:57:36 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Artificial Neural Networks - ICANN 2010
期刊簡稱20th International C
影響因子2023Konstantinos Diamantaras,Wlodek Duch,Lazaros S. Il
視頻videohttp://file.papertrans.cn/163/162698/162698.mp4
發(fā)行地址Fast track conference proceeding.Unique visibility.State of the art research
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Artificial Neural Networks - ICANN 2010; 20th International C Konstantinos Diamantaras,Wlodek Duch,Lazaros S. Il Conference proceedings 201
影響因子th This volume is part of the three-volume proceedings of the 20 International Conference on Arti?cial Neural Networks (ICANN 2010) that was held in Th- saloniki, Greece during September 15–18, 2010. ICANN is an annual meeting sponsored by the European Neural Network Society (ENNS) in cooperation with the International Neural Network So- ety (INNS) and the Japanese Neural Network Society (JNNS). This series of conferences has been held annually since 1991 in Europe, covering the ?eld of neurocomputing, learning systems and other related areas. As in the past 19 events, ICANN 2010 provided a distinguished, lively and interdisciplinary discussion forum for researches and scientists from around the globe. Ito?eredagoodchanceto discussthe latestadvancesofresearchandalso all the developments and applications in the area of Arti?cial Neural Networks (ANNs). ANNs provide an information processing structure inspired by biolo- cal nervous systems and they consist of a large number of highly interconnected processing elements (neurons). Each neuron is a simple processor with a limited computing capacity typically restricted to a rule for combining input signals (utilizing an activation funct
Pindex Conference proceedings 2010
The information of publication is updating

書目名稱Artificial Neural Networks - ICANN 2010影響因子(影響力)




書目名稱Artificial Neural Networks - ICANN 2010影響因子(影響力)學(xué)科排名




書目名稱Artificial Neural Networks - ICANN 2010網(wǎng)絡(luò)公開度




書目名稱Artificial Neural Networks - ICANN 2010網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Artificial Neural Networks - ICANN 2010被引頻次




書目名稱Artificial Neural Networks - ICANN 2010被引頻次學(xué)科排名




書目名稱Artificial Neural Networks - ICANN 2010年度引用




書目名稱Artificial Neural Networks - ICANN 2010年度引用學(xué)科排名




書目名稱Artificial Neural Networks - ICANN 2010讀者反饋




書目名稱Artificial Neural Networks - ICANN 2010讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:40:10 | 只看該作者
H. R. Koelz,P. G. Lankisch,S. Müller-LissnerTri-Class SVMs. The proposed framework is applied to facial expressions recognition task. The results show that . can exploit effectively the independent views and the unlabeled data to improve the recognition accuracy of facial expressions.
板凳
發(fā)表于 2025-3-22 02:58:10 | 只看該作者
地板
發(fā)表于 2025-3-22 07:29:54 | 只看該作者
5#
發(fā)表于 2025-3-22 12:38:56 | 只看該作者
Electrical Circuits of Ordinary Capacitorsng algorithm which has been found to have numerous advantages over Evolution Strategies. Our empirical results confirm the promise of this approach, and we discuss how it can be scaled up to expert-level Go players.
6#
發(fā)表于 2025-3-22 15:25:59 | 只看該作者
7#
發(fā)表于 2025-3-22 18:35:51 | 只看該作者
8#
發(fā)表于 2025-3-23 00:53:40 | 只看該作者
Hidden Markov Model for Human Decision Process in a Partially Observable Environment), which incorporates inference of a hidden variable in the environment and switching between exploration and exploitation. Our HMM-based model well reproduced the human behaviors, suggesting the human subjects actually performed exploration and exploitation to effectively adapt to this uncertain environment.
9#
發(fā)表于 2025-3-23 03:15:12 | 只看該作者
Representing, Learning and Extracting Temporal Knowledge from Neural Networks: A Case Studyis again symbolically represented, incorporating both initial model and learned specification, as shown by our case study. The case study illustrates how the integration of methodologies and principles from distinct AI areas can be relevant to build robust intelligent systems.
10#
發(fā)表于 2025-3-23 08:06:52 | 只看該作者
Multi-Dimensional Deep Memory Atari-Go Players for Parameter Exploring Policy Gradientsng algorithm which has been found to have numerous advantages over Evolution Strategies. Our empirical results confirm the promise of this approach, and we discuss how it can be scaled up to expert-level Go players.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 09:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆德县| 南康市| 白水县| 台安县| 永善县| 安乡县| 汝州市| 麻阳| 扶绥县| 绍兴县| 仁寿县| 南投市| 潢川县| 陇南市| 修武县| 榆林市| 山西省| 东台市| 四川省| 乌恰县| 霸州市| 农安县| 阜阳市| 德兴市| 武鸣县| 高碑店市| 徐水县| 丰台区| 油尖旺区| 游戏| 阿勒泰市| 西藏| 米脂县| 婺源县| 赤城县| 博兴县| 锡林浩特市| 贡觉县| 禹州市| 台中市| 锡林郭勒盟|