找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks - ICANN 2007; 17th International C Joaquim Marques Sá,Luís A. Alexandre,Danilo Mandic Conference proceedings 200

[復制鏈接]
樓主: 習慣
51#
發(fā)表于 2025-3-30 11:49:43 | 只看該作者
52#
發(fā)表于 2025-3-30 14:23:43 | 只看該作者
53#
發(fā)表于 2025-3-30 18:56:39 | 只看該作者
Recurrent Bayesian Reasoning in Probabilistic Neural Networksiological neurons. We show that some parameters of PNN can be “released” for the sake of dynamic processes without destroying the statistically correct decision making. In particular, we can iteratively adapt the mixture component weights or modify the input pattern in order to facilitate the correct recognition.
54#
發(fā)表于 2025-3-30 21:55:46 | 只看該作者
55#
發(fā)表于 2025-3-31 01:57:57 | 只看該作者
Learning Highly Non-separable Boolean Functions Using Constructive Feedforward Neural Networkn such problems with quite good results. The computational cost of training is low because most nodes and connections are fixed and only weights of one node are modified at each training step. Several examples of learning Boolean functions and results of classification tests on real-world multiclass datasets are presented.
56#
發(fā)表于 2025-3-31 05:34:25 | 只看該作者
Conference proceedings 2007ICANN 2007, held in Porto, Portugal, in September 2007...The 197 revised full papers presented were carefully reviewed and selected from 376 submissions. The 98 papers of the first volume are organized in topical sections on learning theory, advances in neural network learning methods, ensemble lear
57#
發(fā)表于 2025-3-31 11:03:22 | 只看該作者
0302-9743 Networks, ICANN 2007, held in Porto, Portugal, in September 2007...The 197 revised full papers presented were carefully reviewed and selected from 376 submissions. The 98 papers of the first volume are organized in topical sections on learning theory, advances in neural network learning methods, ens
58#
發(fā)表于 2025-3-31 13:41:27 | 只看該作者
59#
發(fā)表于 2025-3-31 20:05:20 | 只看該作者
https://doi.org/10.1007/978-3-642-91647-2gnificance of each component in the mixture, and the other one is to discriminate the relevance of each feature to the cluster structure. The experiments on both the synthetic and real-world data show the efficacy of the proposed algorithm.
60#
發(fā)表于 2025-3-31 23:58:17 | 只看該作者
Vidya Sagar Bhasin,Indranil Mazumdaranteed. Model selection is based on predictive assessment, with efficient algorithms that allow fast greedy forward and backward selection within the class of decomposable models. We show the validity of this structure learning approach on toy data, and on two large sets of gene expression data.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
庆元县| 济阳县| 安康市| 道孚县| 竹北市| 阿尔山市| 灵石县| 遵义市| 高青县| 广水市| 平湖市| 湖南省| 吉首市| 新源县| 三明市| 深圳市| 康马县| 剑川县| 思南县| 山东省| 莲花县| 宜春市| 马鞍山市| 襄垣县| 新巴尔虎右旗| 泸定县| 枣阳市| 中牟县| 宣化县| 关岭| 青铜峡市| 皋兰县| 射阳县| 南华县| 建阳市| 榕江县| 馆陶县| 郴州市| 焉耆| 随州市| 屯昌县|