找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks - ICANN 2007; 17th International C Joaquim Marques Sá,Luís A. Alexandre,Danilo Mandic Conference proceedings 200

[復制鏈接]
查看: 32020|回復: 59
樓主
發(fā)表于 2025-3-21 20:03:54 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Artificial Neural Networks - ICANN 2007
期刊簡稱17th International C
影響因子2023Joaquim Marques Sá,Luís A. Alexandre,Danilo Mandic
視頻videohttp://file.papertrans.cn/163/162694/162694.mp4
學科分類Lecture Notes in Computer Science
圖書封面Titlebook: Artificial Neural Networks - ICANN 2007; 17th International C Joaquim Marques Sá,Luís A. Alexandre,Danilo Mandic Conference proceedings 200
影響因子.This two volume set LNCS 4668 and LNCS 4669 constitutes the refereed proceedings of the 17th International Conference on Artificial Neural Networks, ICANN 2007, held in Porto, Portugal, in September 2007...The 197 revised full papers presented were carefully reviewed and selected from 376 submissions. The 98 papers of the first volume are organized in topical sections on learning theory, advances in neural network learning methods, ensemble learning, spiking neural networks, advances in neural network architectures neural network technologies, neural dynamics and complex systems, data analysis, estimation, spatial and spatio-temporal learning, evolutionary computing, meta learning, agents learning, complex-valued neural networks, as well as temporal synchronization and nonlinear dynamics in neural networks..
Pindex Conference proceedings 2007
The information of publication is updating

書目名稱Artificial Neural Networks - ICANN 2007影響因子(影響力)




書目名稱Artificial Neural Networks - ICANN 2007影響因子(影響力)學科排名




書目名稱Artificial Neural Networks - ICANN 2007網(wǎng)絡公開度




書目名稱Artificial Neural Networks - ICANN 2007網(wǎng)絡公開度學科排名




書目名稱Artificial Neural Networks - ICANN 2007被引頻次




書目名稱Artificial Neural Networks - ICANN 2007被引頻次學科排名




書目名稱Artificial Neural Networks - ICANN 2007年度引用




書目名稱Artificial Neural Networks - ICANN 2007年度引用學科排名




書目名稱Artificial Neural Networks - ICANN 2007讀者反饋




書目名稱Artificial Neural Networks - ICANN 2007讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:53:05 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:33:47 | 只看該作者
Improving the Prediction Accuracy of Echo State Neural Networks by Anti-Oja’s Learningal to achieve their greater prediction ability. A standard training of these neural networks uses pseudoinverse matrix for one-step learning of weights from hidden to output neurons. This regular adaptation of Echo State neural networks was optimized by updating the weights of the dynamic reservoir
地板
發(fā)表于 2025-3-22 04:55:17 | 只看該作者
Theoretical Analysis of Accuracy of Gaussian Belief Propagationwn to provide true marginal probabilities when the graph describing the target distribution has a tree structure, while do approximate marginal probabilities when the graph has loops. The accuracy of loopy belief propagation (LBP) has been studied. In this paper, we focus on applying LBP to a multi-
5#
發(fā)表于 2025-3-22 10:42:21 | 只看該作者
Relevance Metrics to Reduce Input Dimensions in Artificial Neural Networks inputs is desirable in order to obtain better generalisation capabilities with the models. There are several approaches to perform input selection. In this work we will deal with techniques guided by measures of input relevance or input sensitivity. Six strategies to assess input relevance were tes
6#
發(fā)表于 2025-3-22 16:31:16 | 只看該作者
An Improved Greedy Bayesian Network Learning Algorithm on Limited Dataor information theoretical measure or a score function may be unreliable on limited datasets, which affects learning accuracy. To alleviate the above problem, we propose a novel BN learning algorithm MRMRG, Max Relevance and Min Redundancy Greedy algorithm. MRMRG algorithm applies Max Relevance and
7#
發(fā)表于 2025-3-22 20:50:35 | 只看該作者
Incremental One-Class Learning with Bounded Computational Complexity - the probability distribution of the training data. In the early stages of training a non-parametric estimate of the training data distribution is obtained using kernel density estimation. Once the number of training examples reaches the maximum computationally feasible limit for kernel density es
8#
發(fā)表于 2025-3-23 00:49:12 | 只看該作者
Estimating the Size of Neural Networks from the Number of Available Training Datads on the size of neural networks that are unrealistic to implement. This work provides a computational study for estimating the size of neural networks using as an estimation parameter the size of available training data. We will also show that the size of a neural network is problem dependent and
9#
發(fā)表于 2025-3-23 03:05:28 | 只看該作者
10#
發(fā)表于 2025-3-23 08:08:01 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 22:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
娱乐| 泽州县| 凯里市| 平果县| 普兰县| 长沙县| 大厂| 高要市| 卓资县| 江城| 海门市| 井陉县| 竹溪县| 林芝县| 苏尼特左旗| 内黄县| 信阳市| 石渠县| 彰化县| 汾西县| 福州市| 洪江市| 拉萨市| 双流县| 和政县| 崇文区| 亳州市| 云和县| 会昌县| 庆云县| 武穴市| 那坡县| 肇庆市| 抚州市| 嫩江县| 昔阳县| 嘉定区| 新巴尔虎左旗| 尖扎县| 中西区| 区。|