找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks - ICANN 2006; 16th International C Stefanos Kollias,Andreas Stafylopatis,Erkki Oja Conference proceedings 2006 S

[復(fù)制鏈接]
樓主: 凝固
41#
發(fā)表于 2025-3-28 17:21:23 | 只看該作者
Content-Based Coin Retrieval Using Invariant Features and Self-organizing Maps1 or L2 similarity measures lead to excellent retrieval capabilities. Finally, color quantization of the database images using self-organizing maps not only leads to memory savings but also it is shown to even improve retrieval accuracy.
42#
發(fā)表于 2025-3-28 21:18:57 | 只看該作者
43#
發(fā)表于 2025-3-28 23:21:45 | 只看該作者
44#
發(fā)表于 2025-3-29 06:12:26 | 只看該作者
Feuerfeste Baustoffe in Siemens-Martin-?fenual features to evaluate the potential of our approach in bridging the gap from visual features to semantic concepts by the use textual presentations. Our initial results show a promising increase in retrieval performance.
45#
發(fā)表于 2025-3-29 09:58:35 | 只看該作者
https://doi.org/10.1007/978-3-7091-7948-2ructure of this metric and proposes a method to update it very efficiently based on the GM models of the relevant and irrelevant images characterized by the user. We show with experiments the merits of the proposed methodology.
46#
發(fā)表于 2025-3-29 14:25:06 | 只看該作者
https://doi.org/10.1007/978-3-662-28736-1erefore, we have implemented a set of comparison methods, the neural network and an extension to the learning rule to include a human as a teacher. First results are promising and show that the approach is valuable for learning human judged time-series similarity with a neural network.
47#
發(fā)表于 2025-3-29 19:03:42 | 只看該作者
48#
發(fā)表于 2025-3-29 20:42:44 | 只看該作者
49#
發(fā)表于 2025-3-30 02:31:48 | 只看該作者
A Relevance Feedback Approach for Content Based Image Retrieval Using Gaussian Mixture Modelsructure of this metric and proposes a method to update it very efficiently based on the GM models of the relevant and irrelevant images characterized by the user. We show with experiments the merits of the proposed methodology.
50#
發(fā)表于 2025-3-30 06:26:34 | 只看該作者
Learning Time-Series Similarity with a Neural Network by Combining Similarity Measureserefore, we have implemented a set of comparison methods, the neural network and an extension to the learning rule to include a human as a teacher. First results are promising and show that the approach is valuable for learning human judged time-series similarity with a neural network.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 06:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安达市| 龙江县| 五莲县| 青田县| 繁峙县| 上栗县| 靖江市| 白河县| 枝江市| 浠水县| 家居| 广西| 乐亭县| 大荔县| 建平县| 长丰县| 丰都县| 竹山县| 巴楚县| 温宿县| 金寨县| 忻州市| 莲花县| 通城县| 高陵县| 和林格尔县| 新郑市| 达州市| 桑日县| 安徽省| 和政县| 汕尾市| 孝义市| 曲阳县| 甘德县| 永州市| 铜梁县| 阿坝| 平果县| 台江县| 庆城县|