找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks - ICANN 2006; 16th International C Stefanos Kollias,Andreas Stafylopatis,Erkki Oja Conference proceedings 2006 S

[復(fù)制鏈接]
樓主: 凝固
41#
發(fā)表于 2025-3-28 17:21:23 | 只看該作者
Content-Based Coin Retrieval Using Invariant Features and Self-organizing Maps1 or L2 similarity measures lead to excellent retrieval capabilities. Finally, color quantization of the database images using self-organizing maps not only leads to memory savings but also it is shown to even improve retrieval accuracy.
42#
發(fā)表于 2025-3-28 21:18:57 | 只看該作者
43#
發(fā)表于 2025-3-28 23:21:45 | 只看該作者
44#
發(fā)表于 2025-3-29 06:12:26 | 只看該作者
Feuerfeste Baustoffe in Siemens-Martin-?fenual features to evaluate the potential of our approach in bridging the gap from visual features to semantic concepts by the use textual presentations. Our initial results show a promising increase in retrieval performance.
45#
發(fā)表于 2025-3-29 09:58:35 | 只看該作者
https://doi.org/10.1007/978-3-7091-7948-2ructure of this metric and proposes a method to update it very efficiently based on the GM models of the relevant and irrelevant images characterized by the user. We show with experiments the merits of the proposed methodology.
46#
發(fā)表于 2025-3-29 14:25:06 | 只看該作者
https://doi.org/10.1007/978-3-662-28736-1erefore, we have implemented a set of comparison methods, the neural network and an extension to the learning rule to include a human as a teacher. First results are promising and show that the approach is valuable for learning human judged time-series similarity with a neural network.
47#
發(fā)表于 2025-3-29 19:03:42 | 只看該作者
48#
發(fā)表于 2025-3-29 20:42:44 | 只看該作者
49#
發(fā)表于 2025-3-30 02:31:48 | 只看該作者
A Relevance Feedback Approach for Content Based Image Retrieval Using Gaussian Mixture Modelsructure of this metric and proposes a method to update it very efficiently based on the GM models of the relevant and irrelevant images characterized by the user. We show with experiments the merits of the proposed methodology.
50#
發(fā)表于 2025-3-30 06:26:34 | 只看該作者
Learning Time-Series Similarity with a Neural Network by Combining Similarity Measureserefore, we have implemented a set of comparison methods, the neural network and an extension to the learning rule to include a human as a teacher. First results are promising and show that the approach is valuable for learning human judged time-series similarity with a neural network.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 06:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高州市| 方城县| 汤原县| 昌乐县| 舞阳县| 民县| 汶川县| 昌黎县| 湘潭县| 漳浦县| 钟祥市| 左云县| 石景山区| 六安市| 丹凤县| 遂川县| 嘉义县| 霍林郭勒市| 唐山市| 林周县| 石狮市| 武威市| 上饶县| 社会| 衡阳县| 龙州县| 福清市| 囊谦县| 漠河县| 灵山县| 教育| 瑞昌市| 尼木县| 剑河县| 永寿县| 拜城县| 鹿泉市| 运城市| 舒城县| 玉树县| 昭苏县|