找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks - ICANN 2006; 16th International C Stefanos Kollias,Andreas Stafylopatis,Erkki Oja Conference proceedings 2006 S

[復(fù)制鏈接]
樓主: 凝固
41#
發(fā)表于 2025-3-28 17:21:23 | 只看該作者
Content-Based Coin Retrieval Using Invariant Features and Self-organizing Maps1 or L2 similarity measures lead to excellent retrieval capabilities. Finally, color quantization of the database images using self-organizing maps not only leads to memory savings but also it is shown to even improve retrieval accuracy.
42#
發(fā)表于 2025-3-28 21:18:57 | 只看該作者
43#
發(fā)表于 2025-3-28 23:21:45 | 只看該作者
44#
發(fā)表于 2025-3-29 06:12:26 | 只看該作者
Feuerfeste Baustoffe in Siemens-Martin-?fenual features to evaluate the potential of our approach in bridging the gap from visual features to semantic concepts by the use textual presentations. Our initial results show a promising increase in retrieval performance.
45#
發(fā)表于 2025-3-29 09:58:35 | 只看該作者
https://doi.org/10.1007/978-3-7091-7948-2ructure of this metric and proposes a method to update it very efficiently based on the GM models of the relevant and irrelevant images characterized by the user. We show with experiments the merits of the proposed methodology.
46#
發(fā)表于 2025-3-29 14:25:06 | 只看該作者
https://doi.org/10.1007/978-3-662-28736-1erefore, we have implemented a set of comparison methods, the neural network and an extension to the learning rule to include a human as a teacher. First results are promising and show that the approach is valuable for learning human judged time-series similarity with a neural network.
47#
發(fā)表于 2025-3-29 19:03:42 | 只看該作者
48#
發(fā)表于 2025-3-29 20:42:44 | 只看該作者
49#
發(fā)表于 2025-3-30 02:31:48 | 只看該作者
A Relevance Feedback Approach for Content Based Image Retrieval Using Gaussian Mixture Modelsructure of this metric and proposes a method to update it very efficiently based on the GM models of the relevant and irrelevant images characterized by the user. We show with experiments the merits of the proposed methodology.
50#
發(fā)表于 2025-3-30 06:26:34 | 只看該作者
Learning Time-Series Similarity with a Neural Network by Combining Similarity Measureserefore, we have implemented a set of comparison methods, the neural network and an extension to the learning rule to include a human as a teacher. First results are promising and show that the approach is valuable for learning human judged time-series similarity with a neural network.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 07:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桓台县| 曲周县| 习水县| 古蔺县| 蒙山县| 商洛市| 青川县| 南昌县| 海安县| 西贡区| 秀山| 榆树市| 皋兰县| 安义县| 和田市| 彭泽县| 德保县| 高邑县| 翁源县| 读书| 进贤县| 泸溪县| 榆社县| 兰考县| 永胜县| 牙克石市| 佛学| 尼玛县| 宁国市| 昔阳县| 浮梁县| 濉溪县| 珠海市| 长葛市| 隆德县| 邢台市| 连南| 大同县| 汉源县| 汉阴县| 玉溪市|