找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks in Pattern Recognition; 6th IAPR TC 3 Intern Neamat Gayar,Friedhelm Schwenker,Cheng Suen Conference proceedings

[復(fù)制鏈接]
查看: 46787|回復(fù): 60
樓主
發(fā)表于 2025-3-21 16:04:59 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Artificial Neural Networks in Pattern Recognition
期刊簡稱6th IAPR TC 3 Intern
影響因子2023Neamat Gayar,Friedhelm Schwenker,Cheng Suen
視頻videohttp://file.papertrans.cn/163/162685/162685.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Artificial Neural Networks in Pattern Recognition; 6th IAPR TC 3 Intern Neamat Gayar,Friedhelm Schwenker,Cheng Suen Conference proceedings
影響因子This book constitutes the refereed proceedings of the 6th IAPR TC3 International Workshop on Artificial Neural Networks in Pattern Recognition, ANNPR 2014, held in Montreal, QC, Canada, in October 2014. The 24 revised full papers presented were carefully reviewed and selected from 37 submissions for inclusion in this volume. They cover a large range of topics in the field of learning algorithms and architectures and discussing the latest research, results, and ideas in these areas.
Pindex Conference proceedings 2014
The information of publication is updating

書目名稱Artificial Neural Networks in Pattern Recognition影響因子(影響力)




書目名稱Artificial Neural Networks in Pattern Recognition影響因子(影響力)學(xué)科排名




書目名稱Artificial Neural Networks in Pattern Recognition網(wǎng)絡(luò)公開度




書目名稱Artificial Neural Networks in Pattern Recognition網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Artificial Neural Networks in Pattern Recognition被引頻次




書目名稱Artificial Neural Networks in Pattern Recognition被引頻次學(xué)科排名




書目名稱Artificial Neural Networks in Pattern Recognition年度引用




書目名稱Artificial Neural Networks in Pattern Recognition年度引用學(xué)科排名




書目名稱Artificial Neural Networks in Pattern Recognition讀者反饋




書目名稱Artificial Neural Networks in Pattern Recognition讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:34:28 | 只看該作者
Analyzing Dynamic Ensemble Selection Techniques Using Dissimilarity Analysisiques was proposed by the authors and uses meta-learning to define the competence of base classifiers based on different criteria. In the dissimilarity analysis, this proposed technique appears closer to the Oracle when compared to others, which would seem to indicate that using different bits of in
板凳
發(fā)表于 2025-3-22 02:15:32 | 只看該作者
地板
發(fā)表于 2025-3-22 08:26:00 | 只看該作者
Combining Bipartite Graph Matching and Beam Search for Graph Edit Distance Approximationork with a fast tree search procedure. More precisely, we regard the assignment from the original approximation as a starting point for a subsequent beam search. In an experimental evaluation on three real world data sets a substantial gain of assignment accuracy can be observed while the run time r
5#
發(fā)表于 2025-3-22 10:51:23 | 只看該作者
6#
發(fā)表于 2025-3-22 16:06:08 | 只看該作者
Part-Based High Accuracy Recognition of Serial Numbers in Bank Notesconducted on a RMB serial number character database show that the test accuracy boosted from 98.90% to 99.33% by utilizing the proposed method with multiple voting based combination strategy. The part-based recognition method can also be extended to other types of banknotes, such as Euro, U.S. and C
7#
發(fā)表于 2025-3-22 17:07:27 | 只看該作者
,“Animal Models” for Fetal Alcohol Effects,al properties of the required input-output mapping using the minimum number of hidden nodes. Hidden nodes with least contribution to the error minimization at the output layer will be pruned. Experimental results show that the proposed pruning algorithm correctly prunes irrelevant hidden units.
8#
發(fā)表于 2025-3-22 21:22:02 | 只看該作者
Leo R. Leader MD, FRACOG, FRCOG, FCOG (SA)iques was proposed by the authors and uses meta-learning to define the competence of base classifiers based on different criteria. In the dissimilarity analysis, this proposed technique appears closer to the Oracle when compared to others, which would seem to indicate that using different bits of in
9#
發(fā)表于 2025-3-23 01:56:09 | 只看該作者
Effect of genome on size at birthg to the resemblance to the underlying concept distribution. Simulation produced with synthetic problems indicate that the proposed fusion technique is able to increase system performance when input data streams incorporate abrupt concept changes, yet maintains a level of performance that is compara
10#
發(fā)表于 2025-3-23 09:16:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 23:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沙坪坝区| 会昌县| 贺州市| 米易县| 阜城县| 南投县| 浪卡子县| 巢湖市| 鄂托克旗| 桓台县| 呼伦贝尔市| 华宁县| 盘山县| 高唐县| 龙里县| 肥乡县| 镇宁| 永靖县| 灌云县| 富蕴县| 繁峙县| 内乡县| 犍为县| 潮州市| 鄂尔多斯市| 大姚县| 新田县| 宁武县| 永寿县| 肇庆市| 铁力市| 香格里拉县| 金堂县| 安仁县| 新河县| 齐河县| 禹州市| 商都县| 禹城市| 全州县| 聂拉木县|