找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks in Pattern Recognition; 9th IAPR TC3 Worksho Frank-Peter Schilling,Thilo Stadelmann Conference proceedings 2020

[復制鏈接]
查看: 51378|回復: 53
樓主
發(fā)表于 2025-3-21 17:04:01 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Artificial Neural Networks in Pattern Recognition
期刊簡稱9th IAPR TC3 Worksho
影響因子2023Frank-Peter Schilling,Thilo Stadelmann
視頻videohttp://file.papertrans.cn/163/162680/162680.mp4
學科分類Lecture Notes in Computer Science
圖書封面Titlebook: Artificial Neural Networks in Pattern Recognition; 9th IAPR TC3 Worksho Frank-Peter Schilling,Thilo Stadelmann Conference proceedings 2020
影響因子.This book constitutes the refereed proceedings of the 9th IAPR TC3 International Workshop on Artificial Neural Networks in Pattern Recognition, ANNPR 2020, held in Winterthur, Switzerland, in September 2020. The conference was held virtually due to the COVID-19 pandemic.. The 22 revised full papers presented were carefully reviewed and selected from 34 submissions. The papers present and discuss the latest research in all areas of neural network-and machine learning-based pattern recognition. They are organized in two sections: learning algorithms and architectures, and applications..
Pindex Conference proceedings 2020
The information of publication is updating

書目名稱Artificial Neural Networks in Pattern Recognition影響因子(影響力)




書目名稱Artificial Neural Networks in Pattern Recognition影響因子(影響力)學科排名




書目名稱Artificial Neural Networks in Pattern Recognition網(wǎng)絡公開度




書目名稱Artificial Neural Networks in Pattern Recognition網(wǎng)絡公開度學科排名




書目名稱Artificial Neural Networks in Pattern Recognition被引頻次




書目名稱Artificial Neural Networks in Pattern Recognition被引頻次學科排名




書目名稱Artificial Neural Networks in Pattern Recognition年度引用




書目名稱Artificial Neural Networks in Pattern Recognition年度引用學科排名




書目名稱Artificial Neural Networks in Pattern Recognition讀者反饋




書目名稱Artificial Neural Networks in Pattern Recognition讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:08:58 | 只看該作者
K. Me?mer,H. Cotta,M. E. Müllers, which avoids the need for retraining the model. We perform experiments using the PASCAL-VOC2007 dataset. While the baseline SSD has 22M parameters and an mAP score of 77.20, the use of the SFCM (one of the plugins we used) increases the mAP score to 78.82 and the number of parameters to 25M.
板凳
發(fā)表于 2025-3-22 00:58:08 | 只看該作者
https://doi.org/10.1007/978-3-642-75445-6ness against noisy inputs. Our empirical results show that the new training regime improves the performance of echo state networks in an open loop setup under high noise and generally improves their performance in closed loop setups.
地板
發(fā)表于 2025-3-22 04:56:00 | 只看該作者
Deutscher Bergbau in Geschichte und Ethos,r performance on NED and introduce a strategy to scale it to hundreds of thousands of formal names. Our experiments on several datasets for alias detection demonstrate that our system is capable of obtaining superior results with a large margin compared to other state-of-the-art systems.
5#
發(fā)表于 2025-3-22 09:44:39 | 只看該作者
6#
發(fā)表于 2025-3-22 16:02:24 | 只看該作者
7#
發(fā)表于 2025-3-22 18:35:12 | 只看該作者
8#
發(fā)表于 2025-3-23 00:30:35 | 只看該作者
9#
發(fā)表于 2025-3-23 02:22:08 | 只看該作者
10#
發(fā)表于 2025-3-23 08:14:07 | 只看該作者
über die Ursache des Geburtseintrittsmethod based on CNN and handcrafted features. Furthermore, a novel analysis technique for deep similarity networks is introduced for the purpose of finding relevant image regions. The proposed approach is evaluated qualitatively on video recordings of the German Broadcasting Archive.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 18:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
上思县| 冷水江市| 泸溪县| 通江县| 巨野县| 城市| 南安市| 泰顺县| 金坛市| 麻城市| 资兴市| 介休市| 西乌| 枞阳县| 大田县| 岗巴县| 军事| 丁青县| 乌兰县| 东乡县| 谢通门县| 集安市| 德钦县| 安义县| 绿春县| 铁力市| 大埔县| 黑水县| 海口市| 唐山市| 连江县| 夹江县| 山阴县| 安国市| 濉溪县| 务川| 普安县| 梁平县| 大足县| 农安县| 普兰县|