找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Neural Information Processing — ICANN/ICONIP 2003; Joint International Okyay Kaynak,Ethem Alpaydin,Lei Xu C

[復(fù)制鏈接]
樓主: Callow
41#
發(fā)表于 2025-3-28 16:45:48 | 只看該作者
Fast and Efficient Training of RBF Networkstic, iterative training algorithms (e.g. gradient-based or second-order techniques) or clustering methods in combination with a linear optimisation technique (e.g. c-means and singular value decomposition for a linear least-squares problem) are applied to find the parameters (centres, radii and weig
42#
發(fā)表于 2025-3-28 22:35:30 | 只看該作者
43#
發(fā)表于 2025-3-29 00:43:10 | 只看該作者
Differential ICAation [2]. In this paper we present an ICA algorithm which employs differential learning, thus named as .. We derive a differential ICA algorithm in the framework of maximum likelihood estimation and random walk model. Algorithm derivation using the natural gradient and local stability analysis are
44#
發(fā)表于 2025-3-29 03:53:07 | 只看該作者
45#
發(fā)表于 2025-3-29 11:12:43 | 只看該作者
46#
發(fā)表于 2025-3-29 12:02:30 | 只看該作者
Optimal Hebbian Learning: A Probabilistic Point of Viewlearning rule from a probabilistic optimality criterion. Our approach allows us to obtain quantitative results in terms of a learning window. This is done by maximising a given likelihood function with respect to the synaptic weights. The resulting weight adaptation is compared with experimental res
47#
發(fā)表于 2025-3-29 19:32:49 | 只看該作者
Competitive Learning by Information Maximization: Eliminating Dead Neurons in Competitive Learning the lateral inhibition is used. Instead, the new method is based upon mutual information maximization between input patterns and competitive units. In maximizing mutual information, the entropy of competitive units is increased as much as possible. This means that all competitive units must equally
48#
發(fā)表于 2025-3-29 20:23:16 | 只看該作者
49#
發(fā)表于 2025-3-30 00:11:14 | 只看該作者
Finite Mixture Model of Bounded Semi-naive Bayesian Networks Classifiershows a good performance in classification tasks. However, the traditional SNBs can only combine two attributes into a combined attribute. This inflexibility together with its strong independency assumption may generate inaccurate distributions for some datasets and thus may greatly restrict the cla
50#
發(fā)表于 2025-3-30 05:29:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 07:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平安县| 驻马店市| 本溪市| 安平县| 岳普湖县| 佛山市| 碌曲县| 虞城县| 苏尼特右旗| 尤溪县| 博爱县| 寿阳县| 石阡县| 枣阳市| 赞皇县| 南乐县| 电白县| 紫云| 宁德市| 墨竹工卡县| 肇东市| 攀枝花市| 蒙城县| 米林县| 南皮县| 如东县| 荣成市| 澄迈县| 图片| 崇明县| 龙门县| 澄城县| 闵行区| 沾益县| 乐业县| 隆回县| 眉山市| 延庆县| 南乐县| 通许县| 岳阳市|