找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2023; 32nd International C Lazaros Iliadis,Antonios Papaleonidas,Chrisina Jay Confe

[復(fù)制鏈接]
樓主: invigorating
41#
發(fā)表于 2025-3-28 17:05:21 | 只看該作者
https://doi.org/10.1007/978-3-031-44201-8artificial neural networks (NN); machine learning; deep learning; federated learning; convolutional neur
42#
發(fā)表于 2025-3-28 22:19:11 | 只看該作者
43#
發(fā)表于 2025-3-29 02:32:52 | 只看該作者
Conference proceedings 2023g, ICANN?2023, which took place in Heraklion, Crete, Greece, during September 26–29, 2023..The 426 full papers and 9 short papers included in these proceedings were carefully reviewed and selected from 947 submissions.?ICANN is a dual-track conference, featuring tracks in brain inspired computing on
44#
發(fā)表于 2025-3-29 05:39:56 | 只看該作者
,Properties of?the?Weighted and?Robust Implicitly Weighted Correlation Coefficients,text of template matching in image analysis. For a highly robust correlation coefficient inspired by the least weighted estimator, properties are derived and novel hypothesis tests are proposed. This robust measure is recommendable particularly for data contaminated by outliers (not only) in the context of image analysis.
45#
發(fā)表于 2025-3-29 09:34:47 | 只看該作者
46#
發(fā)表于 2025-3-29 11:33:41 | 只看該作者
47#
發(fā)表于 2025-3-29 18:31:29 | 只看該作者
Linear-elastisches Werkstoffverhalten, performance can be achieved. The experiments on the Lhasa-Tibetan speech recognition task show that our proposed method is significantly superior to the baseline model, achieving a Tibetan word error rate of 4.12%, which is a 9.34% reduction compared to the baseline model and 1.06% lower compared to the existing pre-training model.
48#
發(fā)表于 2025-3-29 19:54:22 | 只看該作者
Peter H?fele,Lothar Issler,Hans Ruo? way, Mutual Information Dropout can achieve effective improving generalization ability with evaluate neurons. Extensive experiments on Three datasets show that Mutual Information Dropout is much more efficient than many existing Dropout and can meanwhile achieve comparable or even better generalization ability.
49#
發(fā)表于 2025-3-30 02:57:51 | 只看該作者
50#
發(fā)表于 2025-3-30 05:41:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 00:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
玉门市| 桐乡市| 上虞市| 北流市| 寿阳县| 镇宁| 应城市| 巩留县| 桐城市| 开江县| 通州市| 巴彦淖尔市| 永济市| 长春市| 嵊泗县| 凤城市| 长岭县| 瓮安县| 郁南县| 桐柏县| 安溪县| 广灵县| 宁城县| 台中市| 宜兰县| 开化县| 成都市| 诸城市| 津南区| 营山县| 舒兰市| 来凤县| 鄂伦春自治旗| 岚皋县| 朝阳县| 嵊州市| 安仁县| 蒲城县| 万荣县| 利辛县| 肥城市|