找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2023; 32nd International C Lazaros Iliadis,Antonios Papaleonidas,Chrisina Jay Confe

[復(fù)制鏈接]
樓主: invigorating
41#
發(fā)表于 2025-3-28 17:05:21 | 只看該作者
https://doi.org/10.1007/978-3-031-44201-8artificial neural networks (NN); machine learning; deep learning; federated learning; convolutional neur
42#
發(fā)表于 2025-3-28 22:19:11 | 只看該作者
43#
發(fā)表于 2025-3-29 02:32:52 | 只看該作者
Conference proceedings 2023g, ICANN?2023, which took place in Heraklion, Crete, Greece, during September 26–29, 2023..The 426 full papers and 9 short papers included in these proceedings were carefully reviewed and selected from 947 submissions.?ICANN is a dual-track conference, featuring tracks in brain inspired computing on
44#
發(fā)表于 2025-3-29 05:39:56 | 只看該作者
,Properties of?the?Weighted and?Robust Implicitly Weighted Correlation Coefficients,text of template matching in image analysis. For a highly robust correlation coefficient inspired by the least weighted estimator, properties are derived and novel hypothesis tests are proposed. This robust measure is recommendable particularly for data contaminated by outliers (not only) in the context of image analysis.
45#
發(fā)表于 2025-3-29 09:34:47 | 只看該作者
46#
發(fā)表于 2025-3-29 11:33:41 | 只看該作者
47#
發(fā)表于 2025-3-29 18:31:29 | 只看該作者
Linear-elastisches Werkstoffverhalten, performance can be achieved. The experiments on the Lhasa-Tibetan speech recognition task show that our proposed method is significantly superior to the baseline model, achieving a Tibetan word error rate of 4.12%, which is a 9.34% reduction compared to the baseline model and 1.06% lower compared to the existing pre-training model.
48#
發(fā)表于 2025-3-29 19:54:22 | 只看該作者
Peter H?fele,Lothar Issler,Hans Ruo? way, Mutual Information Dropout can achieve effective improving generalization ability with evaluate neurons. Extensive experiments on Three datasets show that Mutual Information Dropout is much more efficient than many existing Dropout and can meanwhile achieve comparable or even better generalization ability.
49#
發(fā)表于 2025-3-30 02:57:51 | 只看該作者
50#
發(fā)表于 2025-3-30 05:41:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 04:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
利津县| 双流县| 德安县| 靖边县| 大连市| 扶风县| 安多县| 岗巴县| 容城县| 定陶县| 上犹县| 牡丹江市| 长春市| 延川县| 通化县| 中西区| 博乐市| 泽州县| 扎鲁特旗| 屯留县| 玉田县| 包头市| 南川市| 崇礼县| 当涂县| 太湖县| 托克托县| 穆棱市| 八宿县| 都江堰市| 福贡县| 波密县| 祥云县| 运城市| 洛阳市| 安康市| 贵州省| 隆尧县| 甘孜| 武城县| 石渠县|