找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2023; 32nd International C Lazaros Iliadis,Antonios Papaleonidas,Chrisina Jay Confe

[復(fù)制鏈接]
查看: 24585|回復(fù): 63
樓主
發(fā)表于 2025-3-21 19:31:24 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Artificial Neural Networks and Machine Learning – ICANN 2023
期刊簡稱32nd International C
影響因子2023Lazaros Iliadis,Antonios Papaleonidas,Chrisina Jay
視頻videohttp://file.papertrans.cn/163/162668/162668.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2023; 32nd International C Lazaros Iliadis,Antonios Papaleonidas,Chrisina Jay Confe
影響因子.The 10-volume set LNCS 14254-14263 constitutes the proceedings of the 32nd International Conference on Artificial Neural Networks and Machine Learning, ICANN 2023, which took place in Heraklion, Crete, Greece, during September 26–29, 2023..The 426 full papers, 9 short papers and 9 abstract papers included in these proceedings were carefully reviewed and selected from 947 submissions. ICANN is a dual-track conference, featuring tracks in brain inspired computing on the one hand, and machine learning on the other, with strong cross-disciplinary interactions and applications.??.
Pindex Conference proceedings 2023
The information of publication is updating

書目名稱Artificial Neural Networks and Machine Learning – ICANN 2023影響因子(影響力)




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2023影響因子(影響力)學(xué)科排名




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2023網(wǎng)絡(luò)公開度




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2023網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2023被引頻次




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2023被引頻次學(xué)科排名




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2023年度引用




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2023年度引用學(xué)科排名




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2023讀者反饋




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2023讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:33:32 | 只看該作者
Zusammengesetzte Beanspruchungen,o improve the scalability of the proposal, we propose a distillation-based method to obtain a lightweight model for the rough retrieval stage. The experimental results on the benchmark dataset . show that our approach outperforms the existing works.
板凳
發(fā)表于 2025-3-22 01:51:03 | 只看該作者
Zusammengesetzte Beanspruchungen, that the encryption method achieves satisfactory results. In fact, the performance of some models trained with encrypted data even surpasses that of the unencrypted method, highlighting the effectiveness of the introduced encryption method and partially resolving the problem of data leakage.
地板
發(fā)表于 2025-3-22 07:13:46 | 只看該作者
5#
發(fā)表于 2025-3-22 10:59:31 | 只看該作者
6#
發(fā)表于 2025-3-22 14:59:25 | 只看該作者
7#
發(fā)表于 2025-3-22 17:23:08 | 只看該作者
8#
發(fā)表于 2025-3-22 21:48:23 | 只看該作者
9#
發(fā)表于 2025-3-23 03:55:28 | 只看該作者
,F-E Fusion: A Fast Detection Method of?Moving UAV Based on?Frame and?Event Flow,the location of moving objects through event flow. Experimental results show that our method has more than 40 times faster recognition speed on the same platform than YOLO v3. The data and the code of the proposed method will be publicly available at
10#
發(fā)表于 2025-3-23 06:47:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 14:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太仆寺旗| 保德县| 北票市| 昌吉市| 吴江市| 马山县| 盐山县| 福泉市| 双桥区| 客服| 芮城县| 莆田市| 恩施市| 乐昌市| 元谋县| 天柱县| 阳春市| 衡阳县| 上饶县| 金门县| 肇东市| 鹿泉市| 博乐市| 南安市| 石嘴山市| 南江县| 玛多县| 乌拉特前旗| 枣庄市| 松桃| 昌都县| 都兰县| 浦北县| 平遥县| 哈巴河县| 湄潭县| 永吉县| 景泰县| 高要市| 平塘县| 濮阳市|