找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2023; 32nd International C Lazaros Iliadis,Antonios Papaleonidas,Chrisina Jay Confe

[復制鏈接]
樓主: 相似
21#
發(fā)表于 2025-3-25 05:52:30 | 只看該作者
,Exploring the?Role of?Recursive Convolutional Layer in?Generative Adversarial Networks,ualitatively and quantitatively. Preliminary experiments suggest that the use of recursive layers holds significant potential to generate higher-quality samples in GANs. The code is publicly available at ..
22#
發(fā)表于 2025-3-25 10:14:18 | 只看該作者
23#
發(fā)表于 2025-3-25 13:07:16 | 只看該作者
24#
發(fā)表于 2025-3-25 19:08:18 | 只看該作者
25#
發(fā)表于 2025-3-25 20:25:22 | 只看該作者
,Low-Frequency Features Optimization for?Transferability Enhancement in?Radar Target Adversarial Attl examples focus on the low-frequency features of attacked targets, which are more generalized. The adversarial examples are guided to attack the high-level semantic features of the target, and the transferability of adversarial examples is improved. Experimental results on moving and stationary tar
26#
發(fā)表于 2025-3-26 03:01:36 | 只看該作者
Multi-convolution and Adaptive-Stride Based Transferable Adversarial Attacks,aptive-stride module adjusts the stride adaptively to control the change range of the stride. Experimental results have shown that MCAN-FGM has a higher?attack success rate?than state-of-the-art gradient-based attack methods.
27#
發(fā)表于 2025-3-26 05:39:46 | 只看該作者
,Multi-source Open-Set Image Classification Based on?Deep Adversarial Domain Adaptation,ture space. Furthermore, to address the inadequate handling of unknown classes in existing methods, we further partition the unknown class samples in the target domain. The proposed model is evaluated on three datasets, and consistently outperforms baseline methods and benchmark single-source open-s
28#
發(fā)表于 2025-3-26 08:49:32 | 只看該作者
29#
發(fā)表于 2025-3-26 13:42:48 | 只看該作者
,Towards Robustness of?Large Language Models on?Text-to-SQL Task: An Adversarial and?Cross-Domain Inro-shot text-to-SQL parsers, their performances degrade under adversarial and domain generalization perturbations, with varying degrees of robustness depending on the type and level of perturbations applied. We also explore the impact of usage-related factors such as prompt design on the performance
30#
發(fā)表于 2025-3-26 19:29:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 21:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
平和县| 阳山县| 四会市| 旌德县| 合肥市| 老河口市| 壤塘县| 亳州市| 镇沅| 拉孜县| 侯马市| 北票市| 茶陵县| 满洲里市| 乌兰县| 莒南县| 措美县| 乐东| 许昌市| 长武县| 广丰县| 新野县| 克山县| 本溪市| 潞城市| 西贡区| 米脂县| 深州市| 桓台县| 滨海县| 海南省| 双流县| 三台县| 邹平县| 高陵县| 临颍县| 博乐市| 禹城市| 宜都市| 龙里县| 黑龙江省|