找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2022; 31st International C Elias Pimenidis,Plamen Angelov,Mehmet Aydin Conference p

[復(fù)制鏈接]
樓主: 母牛膽小鬼
51#
發(fā)表于 2025-3-30 10:09:23 | 只看該作者
,Alleviating Overconfident Failure Predictions via?Masking Predictive Logits in?Semantic Segmentatioe an excessive overconfidence phenomenon in semantic segmentation regarding the model’s classification scores. Unlike image classification, segmentation networks yield undue-high predictive probabilities for failure predictions, which may carry severe repercussions in safety-sensitive applications.
52#
發(fā)表于 2025-3-30 13:38:52 | 只看該作者
53#
發(fā)表于 2025-3-30 18:34:01 | 只看該作者
54#
發(fā)表于 2025-3-30 23:13:53 | 只看該作者
,Long-Horizon Route-Constrained Policy for?Learning Continuous Control Without Exploration,e high cost and high risk of online Reinforcement Learning. However, these solutions have struggled with the distribution shift issue with the lack of exploration of the environment. Distribution shift makes offline learning prone to making wrong decisions and leads to error accumulation in the goal
55#
發(fā)表于 2025-3-31 01:29:43 | 只看該作者
Model-Based Offline Adaptive Policy Optimization with Episodic Memory,, offline RL is challenging due to extrapolation errors caused by the distribution shift between offline datasets and states visited by behavior policy. Existing model-based offline RL methods set pessimistic constraints of the learned model within the support region of the offline data to avoid ext
56#
發(fā)表于 2025-3-31 06:36:16 | 只看該作者
,Multi-mode Light: Learning Special Collaboration Patterns for?Traffic Signal Control,ever, existing researches generally combine a basic RL framework Ape-X DQN with the graph convolutional network (GCN), to aggregate the neighborhood information, lacking unique collaboration exploration at each intersection with shared parameters. This paper proposes a multi-mode Light model that le
57#
發(fā)表于 2025-3-31 09:40:07 | 只看該作者
58#
發(fā)表于 2025-3-31 15:23:47 | 只看該作者
,Reinforcement Learning for?the?Pickup and?Delivery Problem,any heuristic algorithms to solve them. However, with the continuous expansion of logistics scale, these methods generally have the problem of too long calculation time. In order to solve this problem, we propose a reinforcement learning (RL) model based on the Advantage Actor-Critic, which regards
59#
發(fā)表于 2025-3-31 21:27:43 | 只看該作者
60#
發(fā)表于 2025-3-31 22:55:45 | 只看該作者
,Understanding Reinforcement Learning Based Localisation as?a?Probabilistic Inference Algorithm,tain a large number of labelled data, semi-supervised learning with Reinforcement Learning is considered in this paper. We extend the Reinforcement Learning approach, and propose a reward function that provides a clear interpretation and defines an objective function of the Reinforcement Learning. O
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 00:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台湾省| 安新县| 英德市| 志丹县| 大城县| 应城市| 通道| 巩义市| 乐东| 游戏| 竹北市| 冕宁县| 鸡东县| 沾化县| 阿巴嘎旗| 牙克石市| 婺源县| 盐边县| 西峡县| 上饶市| 拜泉县| 会理县| 兰西县| 张掖市| 蕲春县| 吉林省| 承德市| 卢龙县| 辽阳县| 台东县| 张北县| 花莲县| 茂名市| 公主岭市| 西乌珠穆沁旗| 郴州市| 大名县| 宁海县| 独山县| 衢州市| 榆中县|