找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2022; 31st International C Elias Pimenidis,Plamen Angelov,Mehmet Aydin Conference p

[復制鏈接]
樓主: 吸收
41#
發(fā)表于 2025-3-28 18:08:16 | 只看該作者
https://doi.org/10.1007/978-3-540-48954-2of moiré and the dynamic nature of the moiré textures, it is difficult to effectively remove the moiré patterns. In this paper, we propose a multi-spectral dynamic feature encoding (MSDFE) network for image demoiréing. To solve the issue of moiré with distributed frequency spectrum, we design a mult
42#
發(fā)表于 2025-3-28 20:11:02 | 只看該作者
https://doi.org/10.1007/978-3-540-48954-2information about the dataset. While typical setups for feature importance ranking assess input features individually, in this study, we go one step further and rank the importance of groups of features, denoted as feature-blocks. A feature-block can contain features of a specific type or features d
43#
發(fā)表于 2025-3-28 23:19:44 | 只看該作者
44#
發(fā)表于 2025-3-29 05:04:14 | 只看該作者
45#
發(fā)表于 2025-3-29 07:32:17 | 只看該作者
46#
發(fā)表于 2025-3-29 13:10:03 | 只看該作者
https://doi.org/10.1007/978-3-540-48954-2papers, they also increase the possibility of encountering inferior papers. However, it is difficult to predict the quality of a paper just from a glance at the paper. In this paper, we propose a machine learning approach to predicting the quality of scientific papers. Specifically, we predict the q
47#
發(fā)表于 2025-3-29 19:01:34 | 只看該作者
Elektrochemisches Abtragen (ECM),it also largely increases parameters and calculations. In this paper, we propose the following problems. (1) How to build a lighter module that integrates CNN and Transformer? We propose the ML-block module in this paper. Especially, for one thing, reducing the number of channels after the convoluti
48#
發(fā)表于 2025-3-29 22:20:52 | 只看該作者
,Boosting Feature-Aware Network for?Salient Object Detection,d while highlighting the weak features. In addition, considering the different responses of channels to output, we present a weighted aggregation block (WAB) to strengthen the significant channel features and recalibrate channel-wise feature responses. Extensive experiments on five benchmark dataset
49#
發(fā)表于 2025-3-30 00:02:35 | 只看該作者
50#
發(fā)表于 2025-3-30 06:58:47 | 只看該作者
Feature Fusion Distillation,detection, and semantic segmentation on individual benchmarks show FFD jointly assist the student in achieving encouraging performance. It is worth mentioning that when the teacher is ResNet34, the ultimately educated student ResNet18 achieves . top-1 accuracy on ImageNet-1K.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-9 04:24
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
雅江县| 三门县| 布尔津县| 隆林| 威信县| 新沂市| 杨浦区| 赤壁市| 东辽县| 巴中市| 平原县| 基隆市| 江西省| 朔州市| 登封市| 谢通门县| 宁都县| 柞水县| 新昌县| 红河县| 丰都县| 富蕴县| 贵南县| 霍邱县| 扶绥县| 仁寿县| 永靖县| 花莲县| 阿拉善盟| 宁明县| 武城县| 吉安市| 抚顺市| 六盘水市| 微博| 循化| 柯坪县| 红原县| 赣州市| 新竹市| 连平县|