找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2021; 30th International C Igor Farka?,Paolo Masulli,Stefan Wermter Conference proc

[復(fù)制鏈接]
樓主: fungus
41#
發(fā)表于 2025-3-28 15:45:23 | 只看該作者
42#
發(fā)表于 2025-3-28 19:04:13 | 只看該作者
https://doi.org/10.1007/978-3-662-07200-4th limited information. In this paper, fused multi-embedded features are employed to enhance the representations of short texts. Then, a denoising autoencoder with an attention layer is adopted to extract low-dimensional features from the multi-embeddings against the disturbance of noisy texts. Furt
43#
發(fā)表于 2025-3-29 01:34:20 | 只看該作者
A. Herbert Fritz,Günter Schulze we study the brain-like Bayesian Confidence Propagating Neural Network (BCPNN) model, recently extended to extract sparse distributed high-dimensional representations. The usefulness and class-dependent separability of the hidden representations when trained on MNIST and Fashion-MNIST datasets is s
44#
發(fā)表于 2025-3-29 03:16:17 | 只看該作者
Alfred Herbert Fritz,J?rg Schmützcircuit based on the Izhikevich neuron model is designed to reproduce various types of spikes and is optimized for low-voltage operation. Simulation results indicate that the proposed circuit successfully operates in the subthreshold region and can be utilized for reservoir computing.
45#
發(fā)表于 2025-3-29 08:04:27 | 只看該作者
https://doi.org/10.1007/978-3-642-84009-8h is a promising alternative for deep neural networks (DNNs) with high energy consumption. SNNs have reached competitive results compared to DNNs in relatively simple tasks and small datasets such as image classification and MNIST/CIFAR, while few studies on more challenging vision tasks on complex
46#
發(fā)表于 2025-3-29 13:30:38 | 只看該作者
CuRL: Coupled Representation Learning of Cards and Merchants to Detect Transaction Frauds nodes. Moreover, scaling graph-learning algorithms and using them for real-time fraud scoring is an open challenge..In this paper, we propose . and ., coupled representation learning methods that can effectively capture the higher-order interactions in a bipartite graph of payment entities. Instead
47#
發(fā)表于 2025-3-29 17:20:11 | 只看該作者
48#
發(fā)表于 2025-3-29 23:41:12 | 只看該作者
49#
發(fā)表于 2025-3-30 00:42:58 | 只看該作者
SiamSNN: Siamese Spiking Neural Networks for Energy-Efficient Object Trackingor further improvements. SiamSNN is the first deep SNN tracker that achieves short latency and low precision loss on the visual object tracking benchmarks OTB2013/2015, VOT2016/2018, and GOT-10k. Moreover, SiamSNN achieves notably low energy consumption and real-time on Neuromorphic chip TrueNorth.
50#
發(fā)表于 2025-3-30 08:03:52 | 只看該作者
Artificial Neural Networks and Machine Learning – ICANN 202130th International C
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 09:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
布拖县| 芜湖县| 库车县| 酒泉市| 卓资县| 酉阳| 巴塘县| 商丘市| 沂源县| 饶平县| 孟津县| 鹤山市| 新河县| 凤凰县| 平陆县| 思南县| 宜兰县| 淮安市| 沽源县| 项城市| 安化县| 阿瓦提县| 育儿| 项城市| 池州市| 阿克苏市| 伽师县| 永吉县| 淄博市| 旅游| 顺平县| 汝州市| 富源县| 隆昌县| 自治县| 宁城县| 赤峰市| 镇巴县| 襄城县| 奉贤区| 灌南县|