找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2019: Image Processing; 28th International C Igor V. Tetko,Věra K?rková,Fabian Thei

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 14:49:30 | 只看該作者
https://doi.org/10.1007/978-3-7091-4435-0h ScratchDet for fast evaluation. Moreover, as a pre-trained model on ImageNet, DRFNet is also tested with SSD. All the experiments show that DRFNet is an effective and efficient backbone network for object detection.
42#
發(fā)表于 2025-3-28 22:01:26 | 只看該作者
Phase Transitions in Thin Films,square estimation. We integrate the adaptive feature channel weighting scheme into two state-of-the-art handcrafted DCF based trackers, and evaluate them on two benchmarks: OTB2013 and VOT2016, respectively. The experimental results demonstrate its accuracy and efficiency when compared with some state-of-the-art handcrafted DCF based trackers.
43#
發(fā)表于 2025-3-29 00:50:22 | 只看該作者
Ferroelectric Domains: Some Recent Advances,s show that our network achieves superior performance with the fewest parameters and the fastest speed compared with baseline methods on the IDRiD dataset. Specially, with 1/20 parameters and 1/3 inference time, our method is over 10% higher than DeepLab v3+ in terms of F1-score on the IDRiD dataset. The source code of LWENet is available at ..
44#
發(fā)表于 2025-3-29 05:55:47 | 只看該作者
Eye Movement-Based Analysis on Methodologies and Efficiency in the Process of Image Noise Evaluationspatial entropy analysis on eye movement data, a quantitative measure is obtained to show significant correlation with the decision-making efficiency of evaluation processing, which is characterized by evaluation time and decision error. As a result, the new measure may be used as a proxy definition for this decision-making efficiency.
45#
發(fā)表于 2025-3-29 08:59:40 | 只看該作者
46#
發(fā)表于 2025-3-29 11:26:12 | 只看該作者
47#
發(fā)表于 2025-3-29 16:57:30 | 只看該作者
A New Learning-Based One Shot Detection Framework for Natural Imageser these steps, we can obtain a temporary result. Based on this result and some proposals related to it, we refine the proposals through the intersection. Then we conduct second-round detection with new proposals and improve the accuracy. Experiments on different datasets demonstrate that our method is effective and has a certain transferability.
48#
發(fā)表于 2025-3-29 22:35:28 | 只看該作者
49#
發(fā)表于 2025-3-30 03:30:51 | 只看該作者
An Adaptive Feature Channel Weighting Scheme for Correlation Trackingsquare estimation. We integrate the adaptive feature channel weighting scheme into two state-of-the-art handcrafted DCF based trackers, and evaluate them on two benchmarks: OTB2013 and VOT2016, respectively. The experimental results demonstrate its accuracy and efficiency when compared with some state-of-the-art handcrafted DCF based trackers.
50#
發(fā)表于 2025-3-30 07:15:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 22:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永济市| 巴南区| 泽州县| 吴川市| 仙桃市| 南召县| 临颍县| 德钦县| 陵川县| 翁牛特旗| 舟山市| 武定县| 商南县| 西畴县| 张家川| 东丰县| 彭泽县| 安达市| 沙河市| 彩票| 东光县| 黄冈市| 余江县| 买车| 宝丰县| 徐水县| 鸡东县| 彭山县| 商丘市| 华容县| 巴塘县| 江阴市| 丁青县| 娄烦县| 商都县| 建始县| 东乡县| 阿坝县| 彰化县| 大荔县| 绿春县|