找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2018; 27th International C Věra K?rková,Yannis Manolopoulos,Ilias Maglogianni Confe

[復(fù)制鏈接]
樓主: VER
61#
發(fā)表于 2025-4-1 04:36:49 | 只看該作者
62#
發(fā)表于 2025-4-1 07:36:42 | 只看該作者
,Relationale und differentielle Serialit?t,he proposed method is compared with reservoir computing methods with normal neurons and leaky integrator neurons by solving four kinds of regression and classification problems with time-series data. As a result, the proposed method shows superior results in all of problems.
63#
發(fā)表于 2025-4-1 13:13:18 | 只看該作者
https://doi.org/10.1007/978-3-642-47931-1t we can learn compact encoders that, despite the relatively small number of parameters, reach high-level performances in downstream tasks, comparing them with related state-of-the-art approaches or with fully supervised methods.
64#
發(fā)表于 2025-4-1 14:22:10 | 只看該作者
Practical Fractional-Order Neuron Dynamics for Reservoir Computinghe proposed method is compared with reservoir computing methods with normal neurons and leaky integrator neurons by solving four kinds of regression and classification problems with time-series data. As a result, the proposed method shows superior results in all of problems.
65#
發(fā)表于 2025-4-1 21:33:25 | 只看該作者
An Unsupervised Character-Aware Neural Approach to Word and Context Representation Learningt we can learn compact encoders that, despite the relatively small number of parameters, reach high-level performances in downstream tasks, comparing them with related state-of-the-art approaches or with fully supervised methods.
66#
發(fā)表于 2025-4-1 23:18:05 | 只看該作者
Verfassungsrechtliche Problemstellungn in that time step. Finally, the values of the survival function are linearly combined to compute the unique risk score. Thanks to the model structure and the training designed to exploit two loss functions, our model gets better concordance index (C-index) than the state of the art approaches.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 19:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灵璧县| 炎陵县| 丽水市| 周至县| 革吉县| 合作市| 新化县| 涟水县| 黎城县| 鸡东县| 泾源县| 高安市| 岳池县| 彭阳县| 平顺县| 仁布县| 福泉市| 广东省| 礼泉县| 同心县| 斗六市| 含山县| 浙江省| 墨脱县| 聂荣县| 原平市| 平江县| 玉树县| 泊头市| 泰安市| 寿阳县| 山阴县| 合川市| 太白县| 武山县| 巨鹿县| 麻阳| 尉犁县| 合水县| 元江| 台北县|