找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2018; 27th International C Věra K?rková,Yannis Manolopoulos,Ilias Maglogianni Confe

[復制鏈接]
樓主: VER
41#
發(fā)表于 2025-3-28 18:18:20 | 只看該作者
Training Neural Networks Using Predictor-Corrector Gradient Descentcent (PCGD). PCGD uses predictor-corrector inspired techniques to enhance gradient descent. This method uses a sparse history of network parameter values to make periodic predictions of future parameter values in an effort to skip unnecessary training iterations. This method can cut the number of tr
42#
發(fā)表于 2025-3-28 21:06:55 | 只看該作者
Investigating the Role of Astrocyte Units in a Feedforward Neural Networkooperating units in this function. Recent evidence sheds new light on astrocytes and presents them as important regulators of neuronal activity and synaptic plasticity. In this paper, we present a multi-layer perceptron (MLP) with artificial astrocyte units which listen to and regulate hidden neuron
43#
發(fā)表于 2025-3-29 00:47:35 | 只看該作者
44#
發(fā)表于 2025-3-29 06:02:22 | 只看該作者
Implementing Neural Turing Machines from memory by introducing an external memory unit. NTMs have demonstrated superior performance over Long Short-Term Memory Cells in several sequence learning tasks. A number of open source implementations of NTMs exist but are unstable during training and/or fail to replicate the reported performa
45#
發(fā)表于 2025-3-29 08:12:11 | 只看該作者
46#
發(fā)表于 2025-3-29 12:18:43 | 只看該作者
Practical Fractional-Order Neuron Dynamics for Reservoir Computingmal leaky integrator. In general, fractional-order derivative needs all memories leading to the current state from the initial state. Although this feature is useful as a viewpoint of memory capacity, to keep all memories is intractable, in particular, for reservoir computing with many neurons. A re
47#
發(fā)表于 2025-3-29 18:39:56 | 只看該作者
48#
發(fā)表于 2025-3-29 23:12:46 | 只看該作者
Towards End-to-End Raw Audio Music Synthesis timing, pitch accuracy and pattern generalization for automated music generation when processing raw audio data. To this end, we present a proof of concept and build a recurrent neural network architecture capable of generalizing appropriate musical raw audio tracks.
49#
發(fā)表于 2025-3-30 01:24:49 | 只看該作者
50#
發(fā)表于 2025-3-30 06:17:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 17:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
定南县| 莎车县| 溆浦县| 安泽县| 株洲市| 兴宁市| 方正县| 维西| 云安县| 阳城县| 临颍县| 和田市| 上林县| 乌恰县| 芦溪县| 台湾省| 安多县| 上犹县| 北碚区| 泰顺县| 塘沽区| 寿光市| 澎湖县| 唐河县| 弥渡县| 象山县| 定日县| 黑山县| 贺州市| 当雄县| 深州市| 崇明县| 平顶山市| 庐江县| 广元市| 宜川县| 嫩江县| 黄山市| 潢川县| 枝江市| 金寨县|