找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2017; 26th International C Alessandra Lintas,Stefano Rovetta,Alessandro E.P. Confe

[復(fù)制鏈接]
樓主: Spouse
21#
發(fā)表于 2025-3-25 03:58:35 | 只看該作者
22#
發(fā)表于 2025-3-25 10:42:31 | 只看該作者
Artificial Neural Networks and Machine Learning – ICANN 2017978-3-319-68600-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
23#
發(fā)表于 2025-3-25 11:38:20 | 只看該作者
24#
發(fā)表于 2025-3-25 18:45:20 | 只看該作者
25#
發(fā)表于 2025-3-25 23:02:11 | 只看該作者
26#
發(fā)表于 2025-3-26 03:21:10 | 只看該作者
27#
發(fā)表于 2025-3-26 05:37:17 | 只看該作者
Semi-supervised Phoneme Recognition with Recurrent Ladder Networkse being compatible with many existing neural architectures. We present the recurrent ladder network, a novel modification of the ladder network, for semi-supervised learning of recurrent neural networks which we evaluate with a phoneme recognition task on the TIMIT corpus. Our results show that the
28#
發(fā)表于 2025-3-26 10:13:00 | 只看該作者
Mixing Actual and Predicted Sensory States Based on Uncertainty Estimation for Flexible and Robust Rbot behavior. We employ the so-called stochastic continuous-time RNN (S-CTRNN), which can learn to predict the mean and variance (or uncertainty) of subsequent sensorimotor information. Our proposed method uses this estimated uncertainty to determine a mixture ratio for combining actual and predicte
29#
發(fā)表于 2025-3-26 16:23:47 | 只看該作者
30#
發(fā)表于 2025-3-26 19:43:53 | 只看該作者
Neural End-to-End Self-learning of Visuomotor Skills by Environment Interactionex environments, generating suitable training data is time-consuming and depends on the availability of accurate robot models. Deep reinforcement learning alleviates this challenge by letting robots learn in an unsupervised manner through trial and error at the cost of long training times. In contra
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 14:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
镇雄县| 博客| 桂东县| 柳州市| 隆子县| 辽阳县| 深州市| 登封市| 曲麻莱县| 隆子县| 泉州市| 乐清市| 肥城市| 郑州市| 灯塔市| 五指山市| 无棣县| 澜沧| 华容县| 九龙坡区| 加查县| 宜良县| 福海县| 白沙| 建阳市| 怀远县| 安乡县| 无极县| 辽中县| 资中县| 延长县| 保山市| 宁蒗| 彭泽县| 内江市| 平昌县| 和田县| 长子县| 天柱县| 陇西县| 沽源县|