找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2017; 26th International C Alessandra Lintas,Stefano Rovetta,Alessandro E.P. Confe

[復(fù)制鏈接]
樓主: Spouse
21#
發(fā)表于 2025-3-25 03:58:35 | 只看該作者
22#
發(fā)表于 2025-3-25 10:42:31 | 只看該作者
Artificial Neural Networks and Machine Learning – ICANN 2017978-3-319-68600-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
23#
發(fā)表于 2025-3-25 11:38:20 | 只看該作者
24#
發(fā)表于 2025-3-25 18:45:20 | 只看該作者
25#
發(fā)表于 2025-3-25 23:02:11 | 只看該作者
26#
發(fā)表于 2025-3-26 03:21:10 | 只看該作者
27#
發(fā)表于 2025-3-26 05:37:17 | 只看該作者
Semi-supervised Phoneme Recognition with Recurrent Ladder Networkse being compatible with many existing neural architectures. We present the recurrent ladder network, a novel modification of the ladder network, for semi-supervised learning of recurrent neural networks which we evaluate with a phoneme recognition task on the TIMIT corpus. Our results show that the
28#
發(fā)表于 2025-3-26 10:13:00 | 只看該作者
Mixing Actual and Predicted Sensory States Based on Uncertainty Estimation for Flexible and Robust Rbot behavior. We employ the so-called stochastic continuous-time RNN (S-CTRNN), which can learn to predict the mean and variance (or uncertainty) of subsequent sensorimotor information. Our proposed method uses this estimated uncertainty to determine a mixture ratio for combining actual and predicte
29#
發(fā)表于 2025-3-26 16:23:47 | 只看該作者
30#
發(fā)表于 2025-3-26 19:43:53 | 只看該作者
Neural End-to-End Self-learning of Visuomotor Skills by Environment Interactionex environments, generating suitable training data is time-consuming and depends on the availability of accurate robot models. Deep reinforcement learning alleviates this challenge by letting robots learn in an unsupervised manner through trial and error at the cost of long training times. In contra
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 14:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蓬安县| 吉首市| 武城县| 红河县| 乌鲁木齐市| 大石桥市| 曲松县| 南阳市| 嘉禾县| 临清市| 益阳市| 张家港市| 大悟县| 岢岚县| 黎平县| 永新县| 伊吾县| 峡江县| 若羌县| 吉水县| 惠州市| 抚远县| 吴川市| 乳源| 法库县| 韶关市| 株洲市| 奎屯市| 承德市| 响水县| 正阳县| 桑日县| 康乐县| 清苑县| 崇礼县| 皮山县| 大渡口区| 襄垣县| 太谷县| 大宁县| 乌什县|