找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2017; 26th International C Alessandra Lintas,Stefano Rovetta,Alessandro E.P. Confe

[復(fù)制鏈接]
樓主: Spouse
21#
發(fā)表于 2025-3-25 03:58:35 | 只看該作者
22#
發(fā)表于 2025-3-25 10:42:31 | 只看該作者
Artificial Neural Networks and Machine Learning – ICANN 2017978-3-319-68600-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
23#
發(fā)表于 2025-3-25 11:38:20 | 只看該作者
24#
發(fā)表于 2025-3-25 18:45:20 | 只看該作者
25#
發(fā)表于 2025-3-25 23:02:11 | 只看該作者
26#
發(fā)表于 2025-3-26 03:21:10 | 只看該作者
27#
發(fā)表于 2025-3-26 05:37:17 | 只看該作者
Semi-supervised Phoneme Recognition with Recurrent Ladder Networkse being compatible with many existing neural architectures. We present the recurrent ladder network, a novel modification of the ladder network, for semi-supervised learning of recurrent neural networks which we evaluate with a phoneme recognition task on the TIMIT corpus. Our results show that the
28#
發(fā)表于 2025-3-26 10:13:00 | 只看該作者
Mixing Actual and Predicted Sensory States Based on Uncertainty Estimation for Flexible and Robust Rbot behavior. We employ the so-called stochastic continuous-time RNN (S-CTRNN), which can learn to predict the mean and variance (or uncertainty) of subsequent sensorimotor information. Our proposed method uses this estimated uncertainty to determine a mixture ratio for combining actual and predicte
29#
發(fā)表于 2025-3-26 16:23:47 | 只看該作者
30#
發(fā)表于 2025-3-26 19:43:53 | 只看該作者
Neural End-to-End Self-learning of Visuomotor Skills by Environment Interactionex environments, generating suitable training data is time-consuming and depends on the availability of accurate robot models. Deep reinforcement learning alleviates this challenge by letting robots learn in an unsupervised manner through trial and error at the cost of long training times. In contra
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 14:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
科技| 股票| 特克斯县| 开江县| 泰兴市| 嘉义县| 汶上县| 鹿泉市| 永福县| 南丰县| 翁源县| 小金县| 宁城县| 瓦房店市| 易门县| 江华| 南澳县| 介休市| 泽州县| 黄石市| 安西县| 兴文县| 高密市| 西城区| 双江| 额济纳旗| 基隆市| 临安市| 金昌市| 项城市| 年辖:市辖区| 博野县| 庆安县| 麟游县| 宁德市| 紫金县| 南丰县| 车致| 吉安县| 和硕县| 芷江|