找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2017; 26th International C Alessandra Lintas,Stefano Rovetta,Alessandro E.P. Confe

[復(fù)制鏈接]
樓主: Spouse
21#
發(fā)表于 2025-3-25 03:58:35 | 只看該作者
22#
發(fā)表于 2025-3-25 10:42:31 | 只看該作者
Artificial Neural Networks and Machine Learning – ICANN 2017978-3-319-68600-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
23#
發(fā)表于 2025-3-25 11:38:20 | 只看該作者
24#
發(fā)表于 2025-3-25 18:45:20 | 只看該作者
25#
發(fā)表于 2025-3-25 23:02:11 | 只看該作者
26#
發(fā)表于 2025-3-26 03:21:10 | 只看該作者
27#
發(fā)表于 2025-3-26 05:37:17 | 只看該作者
Semi-supervised Phoneme Recognition with Recurrent Ladder Networkse being compatible with many existing neural architectures. We present the recurrent ladder network, a novel modification of the ladder network, for semi-supervised learning of recurrent neural networks which we evaluate with a phoneme recognition task on the TIMIT corpus. Our results show that the
28#
發(fā)表于 2025-3-26 10:13:00 | 只看該作者
Mixing Actual and Predicted Sensory States Based on Uncertainty Estimation for Flexible and Robust Rbot behavior. We employ the so-called stochastic continuous-time RNN (S-CTRNN), which can learn to predict the mean and variance (or uncertainty) of subsequent sensorimotor information. Our proposed method uses this estimated uncertainty to determine a mixture ratio for combining actual and predicte
29#
發(fā)表于 2025-3-26 16:23:47 | 只看該作者
30#
發(fā)表于 2025-3-26 19:43:53 | 只看該作者
Neural End-to-End Self-learning of Visuomotor Skills by Environment Interactionex environments, generating suitable training data is time-consuming and depends on the availability of accurate robot models. Deep reinforcement learning alleviates this challenge by letting robots learn in an unsupervised manner through trial and error at the cost of long training times. In contra
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 16:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平舆县| 禄丰县| 株洲市| 浦城县| 广昌县| 吕梁市| 贺兰县| 扎囊县| 融水| 望城县| 雅安市| 大城县| 古丈县| 德钦县| 微博| 鄂尔多斯市| 汝阳县| 尼勒克县| 渭源县| 巫溪县| 灵山县| 万源市| 峨眉山市| 汉寿县| 桓台县| 宿州市| 宝坻区| 威信县| 孝昌县| 内黄县| 深水埗区| 建阳市| 宕昌县| 乐安县| 色达县| 青铜峡市| 潮州市| 台湾省| 安宁市| 乌拉特中旗| 修武县|