找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2017; 26th International C Alessandra Lintas,Stefano Rovetta,Alessandro E.P. Confe

[復(fù)制鏈接]
樓主: 出租車
51#
發(fā)表于 2025-3-30 09:26:37 | 只看該作者
Fernsehen – Internet – Konvergenzcessfully employed for nation-state APT attribution. We use sandbox reports (recording the behavior of the APT when run dynamically) as raw input for the neural network, allowing the DNN to learn high level feature abstractions of the APTs itself. Using a test set of 1,000 Chinese and Russian developed APTs, we achieved an accuracy rate of 94.6%.
52#
發(fā)表于 2025-3-30 13:23:13 | 只看該作者
https://doi.org/10.1007/978-3-658-30251-1butions of groups and parameters that represent the noise as hidden variables. The model can be learned based on a variational Bayesian method. In numerical experiments, we show that the proposed model outperforms existing methods in terms of the estimation of the true labels of instances.
53#
發(fā)表于 2025-3-30 18:12:19 | 只看該作者
54#
發(fā)表于 2025-3-30 21:56:41 | 只看該作者
55#
發(fā)表于 2025-3-31 02:51:02 | 只看該作者
56#
發(fā)表于 2025-3-31 08:27:42 | 只看該作者
DeepAPT: Nation-State APT Attribution Using End-to-End Deep Neural Networkscessfully employed for nation-state APT attribution. We use sandbox reports (recording the behavior of the APT when run dynamically) as raw input for the neural network, allowing the DNN to learn high level feature abstractions of the APTs itself. Using a test set of 1,000 Chinese and Russian developed APTs, we achieved an accuracy rate of 94.6%.
57#
發(fā)表于 2025-3-31 10:03:14 | 只看該作者
58#
發(fā)表于 2025-3-31 13:23:04 | 只看該作者
59#
發(fā)表于 2025-3-31 19:32:41 | 只看該作者
60#
發(fā)表于 2025-4-1 01:13:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 11:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
福建省| 兴安县| 九寨沟县| 宣化县| 龙里县| 宣武区| 玉林市| 盈江县| 堆龙德庆县| 海阳市| 湛江市| 盐津县| 浦县| 吉安县| 西乌珠穆沁旗| 西林县| 乐陵市| 南城县| 新丰县| 神农架林区| 沂水县| 安国市| 亚东县| 永丰县| 镇坪县| 都江堰市| 白山市| 广南县| 赤城县| 泗洪县| 南雄市| 曲靖市| 科技| 永修县| 绵竹市| 唐山市| 万山特区| 曲水县| 柞水县| 稻城县| 射洪县|