找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning -- ICANN 2014; 24th International C Stefan Wermter,Cornelius Weber,Alessandro E. P. Vi Conf

[復制鏈接]
查看: 41214|回復: 42
樓主
發(fā)表于 2025-3-21 18:20:31 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Artificial Neural Networks and Machine Learning -- ICANN 2014
期刊簡稱24th International C
影響因子2023Stefan Wermter,Cornelius Weber,Alessandro E. P. Vi
視頻videohttp://file.papertrans.cn/163/162636/162636.mp4
學科分類Lecture Notes in Computer Science
圖書封面Titlebook: Artificial Neural Networks and Machine Learning -- ICANN 2014; 24th International C Stefan Wermter,Cornelius Weber,Alessandro E. P. Vi Conf
影響因子The book constitutes the proceedings of the 24th International Conference on Artificial Neural Networks, ICANN 2014, held in Hamburg, Germany, in September 2014. .The 107 papers included in the proceedings were carefully reviewed and selected from 173 submissions. The focus of the papers is on following topics: recurrent networks; competitive learning and self-organisation; clustering and classification; trees and graphs; human-machine interaction; deep networks; theory; reinforcement learning and action; vision; supervised learning; dynamical models and time series; neuroscience; and applications.
Pindex Conference proceedings 2014
The information of publication is updating

書目名稱Artificial Neural Networks and Machine Learning -- ICANN 2014影響因子(影響力)




書目名稱Artificial Neural Networks and Machine Learning -- ICANN 2014影響因子(影響力)學科排名




書目名稱Artificial Neural Networks and Machine Learning -- ICANN 2014網(wǎng)絡(luò)公開度




書目名稱Artificial Neural Networks and Machine Learning -- ICANN 2014網(wǎng)絡(luò)公開度學科排名




書目名稱Artificial Neural Networks and Machine Learning -- ICANN 2014被引頻次




書目名稱Artificial Neural Networks and Machine Learning -- ICANN 2014被引頻次學科排名




書目名稱Artificial Neural Networks and Machine Learning -- ICANN 2014年度引用




書目名稱Artificial Neural Networks and Machine Learning -- ICANN 2014年度引用學科排名




書目名稱Artificial Neural Networks and Machine Learning -- ICANN 2014讀者反饋




書目名稱Artificial Neural Networks and Machine Learning -- ICANN 2014讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:51:42 | 只看該作者
Human Action Recognition with Hierarchical Growing Neural Gas Learningm depth map sequences. We then cluster pose-motion cues with a two-stream hierarchical architecture based on growing neural gas (GNG). Multi-cue trajectories are finally combined to provide prototypical action dynamics in the joint feature space. We extend the unsupervised GNG with two labelling fun
板凳
發(fā)表于 2025-3-22 00:35:00 | 只看該作者
Real-Time Anomaly Detection with a Growing Neural Gasnchronously operating pixels that is inspired by the human retina. Each pixel reports events of illumination changes, are processed in a purely event-based tracker that pursues edges of events in the input stream. The tracker estimates are used to determine whether the input events originate from an
地板
發(fā)表于 2025-3-22 05:45:57 | 只看該作者
5#
發(fā)表于 2025-3-22 12:42:29 | 只看該作者
A Non-parametric Maximum Entropy Clustering quantities such as entropy and mutual information. Recently, since these quantities can be estimated in non-parametric manner, non-parametric information theoretic clustering gains much attention. Assuming the dataset is sampled from a certain cluster, and assigning different sampling weights depen
6#
發(fā)表于 2025-3-22 15:36:50 | 只看該作者
7#
發(fā)表于 2025-3-22 19:50:20 | 只看該作者
8#
發(fā)表于 2025-3-22 21:45:00 | 只看該作者
Leaving Local Optima in Unsupervised Kernel Regressione local optima in the data space reconstruction error (DSRE) minimization process of unsupervised kernel regression (UKR). For this sake, we concentrate on a hybrid UKR variant that combines iterative solution construction with gradient descent based optimization. Patterns with high reconstruction e
9#
發(fā)表于 2025-3-23 05:09:38 | 只看該作者
10#
發(fā)表于 2025-3-23 08:54:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 01:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
凌海市| 新乐市| 宁陵县| 巴中市| 揭阳市| 根河市| 西和县| 晋江市| 堆龙德庆县| 奈曼旗| 陇川县| 东安县| 富裕县| 垫江县| 新巴尔虎右旗| 凤凰县| 汪清县| 宁强县| 揭阳市| 环江| 茶陵县| 金平| 禹城市| 广河县| 彭泽县| 红原县| 洱源县| 元江| 乳源| 富锦市| 泰来县| 桦甸市| 许昌市| 旬阳县| 射洪县| 芦山县| 花垣县| 永定县| 庆元县| 新昌县| 额尔古纳市|