找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning -- ICANN 2013; 23rd International C Valeri Mladenov,Petia Koprinkova-Hristova,Nikola K Conf

[復(fù)制鏈接]
樓主: 調(diào)停
21#
發(fā)表于 2025-3-25 04:51:31 | 只看該作者
22#
發(fā)表于 2025-3-25 09:59:14 | 只看該作者
23#
發(fā)表于 2025-3-25 12:43:46 | 只看該作者
Fernsehaneignung und Alltagsgespr?cheowever, the multiplicative algorithms used for updating the underlying factors may result in a slow convergence of the training process. To tackle this problem, we propose to use the Spectral Projected Gradient (SPG) method that is based on quasi-Newton methods. The results are presented for image classification problems.
24#
發(fā)表于 2025-3-25 16:13:02 | 只看該作者
25#
發(fā)表于 2025-3-25 20:58:33 | 只看該作者
Hessian Corrected Input Noise Modelsse. The method works for arbitrary regression models, the only requirement is two times differentiability of the respective model. The conducted experiments suggest that significant improvement can be gained using the proposed method. Nevertheless, experiments on high dimensional data highlight the limitations of the algorithm.
26#
發(fā)表于 2025-3-26 02:37:10 | 只看該作者
Fast Approximation Method for Gaussian Process Regression Using Hash Function for Non-uniformly Diste the performance of our method, we apply it to regression problems, i.e., artificial data and actual hand motion data. Results indicate that our method can perform accurate calculation and fast approximation of GPR even if the dataset is non-uniformly distributed.
27#
發(fā)表于 2025-3-26 05:44:06 | 只看該作者
GNMF with Newton-Based Methodsowever, the multiplicative algorithms used for updating the underlying factors may result in a slow convergence of the training process. To tackle this problem, we propose to use the Spectral Projected Gradient (SPG) method that is based on quasi-Newton methods. The results are presented for image classification problems.
28#
發(fā)表于 2025-3-26 10:45:10 | 只看該作者
Direct Method for Training Feed-Forward Neural Networks Using Batch Extended Kalman Filter for MultiTime and batch modification of the Extended Kalman Filter are introduced. Experiments were carried out on well-known timeseries benchmarks, the Mackey-Glass chaotic process and the Santa Fe Laser Data Series. Recurrent and feed-forward neural networks were evaluated.
29#
發(fā)表于 2025-3-26 14:35:28 | 只看該作者
Moderieren, interviewen, sprechen, seven time series datasets. The results show that data reduction, even when applied on dimensionally reduced data, can in some cases improve the accuracy and at the same time reduce the computational cost of classification.
30#
發(fā)表于 2025-3-26 17:45:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 23:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
周宁县| 那曲县| 临朐县| 波密县| 泉州市| 日土县| 乌恰县| 军事| 友谊县| 车致| 芜湖县| 乡宁县| 翁牛特旗| 松桃| 康马县| 定边县| 井研县| 恩平市| 沙河市| 揭西县| 泰和县| 苏州市| 天水市| 监利县| 鸡东县| 濮阳市| 曲沃县| 扬州市| 西充县| 高陵县| 吉水县| 陆川县| 新竹县| 专栏| 巴彦淖尔市| 延津县| 呼和浩特市| 潼南县| 佛教| 广西| 香港|