找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning -- ICANN 2012; 22nd International C Alessandro E. P. Villa,W?odzis?aw Duch,Günther Pal Conf

[復(fù)制鏈接]
查看: 21295|回復(fù): 66
樓主
發(fā)表于 2025-3-21 18:00:53 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Artificial Neural Networks and Machine Learning -- ICANN 2012
期刊簡稱22nd International C
影響因子2023Alessandro E. P. Villa,W?odzis?aw Duch,Günther Pal
視頻videohttp://file.papertrans.cn/163/162633/162633.mp4
發(fā)行地址Uo to date results Fast track conference proceedings.State-of-the-Art research
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Artificial Neural Networks and Machine Learning -- ICANN 2012; 22nd International C Alessandro E. P. Villa,W?odzis?aw Duch,Günther Pal Conf
影響因子The two-volume set LNCS 7552 + 7553 constitutes the proceedings of the 22nd International Conference on Artificial Neural Networks, ICANN 2012, held in Lausanne, Switzerland, in September 2012. The 162 papers included in the proceedings were carefully reviewed and selected from 247 submissions. They are organized in topical sections named: theoretical neural computation; information and optimization; from neurons to neuromorphism; spiking dynamics; from single neurons to networks; complex firing patterns; movement and motion; from sensation to perception; object and face recognition; reinforcement learning; bayesian and echo state networks; recurrent neural networks and reservoir computing; coding architectures; interacting with the brain; swarm intelligence and decision-making; mulitlayer perceptrons and kernel networks; training and learning; inference and recognition; support vector machines; self-organizing maps and clustering; clustering, mining and exploratory analysis; bioinformatics; and time weries and forecasting.
Pindex Conference proceedings 2012
The information of publication is updating

書目名稱Artificial Neural Networks and Machine Learning -- ICANN 2012影響因子(影響力)




書目名稱Artificial Neural Networks and Machine Learning -- ICANN 2012影響因子(影響力)學(xué)科排名




書目名稱Artificial Neural Networks and Machine Learning -- ICANN 2012網(wǎng)絡(luò)公開度




書目名稱Artificial Neural Networks and Machine Learning -- ICANN 2012網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Artificial Neural Networks and Machine Learning -- ICANN 2012被引頻次




書目名稱Artificial Neural Networks and Machine Learning -- ICANN 2012被引頻次學(xué)科排名




書目名稱Artificial Neural Networks and Machine Learning -- ICANN 2012年度引用




書目名稱Artificial Neural Networks and Machine Learning -- ICANN 2012年度引用學(xué)科排名




書目名稱Artificial Neural Networks and Machine Learning -- ICANN 2012讀者反饋




書目名稱Artificial Neural Networks and Machine Learning -- ICANN 2012讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:32:12 | 只看該作者
Theoretical Analysis of Function of Derivative Term in On-Line Gradient Descent Learningh as by using the natural gradient, has been proposed for speeding up the convergence. Beside this sophisticated method, ”simple method” that replace the derivative term with a constant has proposed and showed that this greatly increases convergence speed. Although this phenomenon has been analyzed
板凳
發(fā)表于 2025-3-22 02:15:26 | 只看該作者
地板
發(fā)表于 2025-3-22 05:14:37 | 只看該作者
5#
發(fā)表于 2025-3-22 10:56:40 | 只看該作者
Electricity Load Forecasting: A Weekday-Based Approachlection using autocorrelation analysis for each day of the week and build a separate prediction model using linear regression and backpropagation neural networks. We used two years of 5-minute electricity load data for the state of New South Wales in Australia to evaluate performance. Our results sh
6#
發(fā)表于 2025-3-22 15:42:06 | 只看該作者
Adaptive Exploration Using Stochastic Neuronsl-free temporal-difference learning using discrete actions. The advantage is in particular memory efficiency, because memorizing exploratory data is only required for starting states. Hence, if a learning problem consist of only one starting state, exploratory data can be considered as being global.
7#
發(fā)表于 2025-3-22 21:01:49 | 只看該作者
Comparison of Long-Term Adaptivity for Neural Networks. Problems occur if the system dynamics change over time (concept drift). We survey different approaches to handle concept drift and to ensure good prognosis quality over long time ranges. Two main approaches - data accumulation and ensemble learning - are explained and implemented. We compare the c
8#
發(fā)表于 2025-3-22 22:48:28 | 只看該作者
9#
發(fā)表于 2025-3-23 03:36:35 | 只看該作者
A Modified Artificial Fish Swarm Algorithm for the Optimization of Extreme Learning Machinesffer from generalization loss caused by overfitting, thereby the process of learning is highly biased. For this work we use Extreme Learning Machine which is an algorithm for training single hidden layer neural networks, and propose a novel swarm-based method for optimizing its weights and improving
10#
發(fā)表于 2025-3-23 09:11:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 00:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳西县| 扎囊县| 中西区| 峡江县| 阿坝| 清新县| 泰安市| 平安县| 景泰县| 宜君县| 乐陵市| 龙川县| 抚松县| 宝山区| 双鸭山市| 剑河县| 澎湖县| 南岸区| 兴化市| 金平| 台江县| 彰武县| 自贡市| 宝坻区| 云浮市| 凤翔县| 育儿| 龙口市| 屯昌县| 杂多县| 高青县| 台江县| 昌吉市| 龙江县| 桂东县| 营山县| 康定县| 弥勒县| 宁蒗| 中方县| 齐齐哈尔市|