找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning - ICANN 2011; 21st International C Timo Honkela,W?odzis?aw Duch,Samuel Kaski Conference pro

[復(fù)制鏈接]
樓主: MIFF
21#
發(fā)表于 2025-3-25 05:21:23 | 只看該作者
22#
發(fā)表于 2025-3-25 09:58:04 | 只看該作者
https://doi.org/10.1007/978-3-662-31589-7ifier we can additionally apply the Particle Swarm Optimization algorithm to tune its free parameters. Our experimental results show that by applying Particle Swarm Optimization on the Sub-class Linear Discriminant Error Correcting Output Codes framework we get a significant improvement in the classification performance.
23#
發(fā)表于 2025-3-25 15:04:35 | 只看該作者
24#
發(fā)表于 2025-3-25 17:56:55 | 只看該作者
Optimizing Linear Discriminant Error Correcting Output Codes Using Particle Swarm Optimization,ifier we can additionally apply the Particle Swarm Optimization algorithm to tune its free parameters. Our experimental results show that by applying Particle Swarm Optimization on the Sub-class Linear Discriminant Error Correcting Output Codes framework we get a significant improvement in the classification performance.
25#
發(fā)表于 2025-3-25 22:56:48 | 只看該作者
26#
發(fā)表于 2025-3-26 01:59:13 | 只看該作者
27#
發(fā)表于 2025-3-26 06:25:15 | 只看該作者
Fermat’s Last Theorem for Amateursn provides a fast adjustment of the BCI system to mild changes of the signal. The proposed algorithm was validated on artificial and real data sets. In comparison to generic Multi-Way PLS, the recursive algorithm demonstrates good performance and robustness.
28#
發(fā)表于 2025-3-26 11:41:09 | 只看該作者
Fermat’s Last Theorem for Amateursed for regression problems of big and complex datasets. It was applied to the problem of steel temperature prediction in the electric arc furnace in order to decrease the process duration at one of the steelworks.
29#
發(fā)表于 2025-3-26 15:25:16 | 只看該作者
30#
發(fā)表于 2025-3-26 17:54:32 | 只看該作者
Weakly Supervised Learning of Foreground-Background Segmentation Using Masked RBMs,very weak supervision. The model generates plausible samples and performs foreground-background segmentation. We demonstrate that representing foreground objects independently of the background can be beneficial in recognition tasks.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-16 11:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
玉溪市| 泽普县| 页游| 嘉定区| 万源市| 昆明市| 西乌珠穆沁旗| 上林县| 镇江市| 灵武市| 邹平县| 夏邑县| 石楼县| 阿鲁科尔沁旗| 铁力市| 罗源县| 克什克腾旗| 永川市| 原阳县| 贵南县| 涡阳县| 昌黎县| 钟山县| 特克斯县| 峨眉山市| 博湖县| 沽源县| 酒泉市| 广平县| 仪征市| 宜宾县| 天津市| 凤阳县| 重庆市| 遂川县| 陆良县| 陵川县| 栖霞市| 龙川县| 洪雅县| 宜州市|