找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks; Hugh Cartwright Book 2015Latest edition Springer Science+Business Media New York 2015 ANN.Artificial Intellige

[復(fù)制鏈接]
樓主: 雜技演員
21#
發(fā)表于 2025-3-25 04:00:58 | 只看該作者
The Syphilitic as Moral Degeneratee range of structural factors, and the artificial neural network based TALOS-N program has been trained to extract backbone and side-chain torsion angles from .H, .N, and .C shifts. The program is quite robust and typically yields backbone torsion angles for more than 90 % of the residues and side-c
22#
發(fā)表于 2025-3-25 09:19:53 | 只看該作者
https://doi.org/10.1057/9780230375130een these microbial communities and their environment is essential for prediction of community structure, robustness, and response to ecosystem changes. Microbial Assemblage Prediction (MAP) describes microbial community structure as an artificial neural network (ANN) that models the microbial commu
23#
發(fā)表于 2025-3-25 15:01:26 | 只看該作者
24#
發(fā)表于 2025-3-25 18:10:49 | 只看該作者
25#
發(fā)表于 2025-3-25 22:38:33 | 只看該作者
26#
發(fā)表于 2025-3-26 03:25:45 | 只看該作者
https://doi.org/10.1057/9780230375130tivity by computational means can help us to understand their mechanism of action and deliver powerful drug-screening methodologies. In this chapter, we describe how to apply artificial neural networks to predict antimicrobial peptide activity.
27#
發(fā)表于 2025-3-26 07:31:22 | 只看該作者
28#
發(fā)表于 2025-3-26 11:08:41 | 只看該作者
https://doi.org/10.1057/9780230113497verse compounds. Three types of fingerprints, namely ECFP6, FP2, and MACCS, were used as inputs to train the FANN-QSAR models. The results were benchmarked against known 2D and 3D QSAR methods, and the derived models were used to predict cannabinoid (CB) ligand binding activities as a case study. In
29#
發(fā)表于 2025-3-26 14:53:12 | 只看該作者
Stem Revision in Periprosthetic Fractures,ENN is in its generality, simplicity of use, and its specific handling of windowed input/output. Its main strength is its efficient handling of the input data, enabling learning from large datasets. GENN is built on a two-layered neural network and has the option to use separate inputs–output pairs
30#
發(fā)表于 2025-3-26 16:57:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 19:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洪江市| 胶州市| 开封市| 丹东市| 江津市| 山阳县| 垫江县| 杨浦区| 湾仔区| 遵义市| 砀山县| 泾川县| 朝阳市| 永修县| 宁化县| 申扎县| 杭锦旗| 额济纳旗| 安塞县| 纳雍县| 土默特左旗| 印江| 藁城市| 高密市| 安福县| 黄大仙区| 阜新市| 荥经县| 怀宁县| 东城区| 肃南| 永春县| 深水埗区| 铜陵市| 崇左市| 磴口县| 梅河口市| 吴忠市| 交口县| 纳雍县| 大足县|