找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks; Methods and Applicat Petia Koprinkova-Hristova,Valeri Mladenov,Nikola K Conference proceedings 2015 Springer In

[復(fù)制鏈接]
樓主: Inspection
61#
發(fā)表于 2025-4-1 02:06:29 | 只看該作者
Feministische Methodologien und Methodenow empirically that the proposed method overcomes the difficulty in training DBMs from randomly initialized parameters and results in a better, or comparable, generative model when compared to the conventional pretraining algorithm.
62#
發(fā)表于 2025-4-1 09:40:18 | 只看該作者
63#
發(fā)表于 2025-4-1 14:04:11 | 只看該作者
Image Classification with Nonnegative Matrix Factorization Based on Spectral Projected Gradient,s in NMF become large-scale. However, the computational problem can be considerably alleviated if the modified Spectral Projected Gradient (SPG) that belongs to a class of quasi-Newton methods is used. The simulation results presented for the selected classification problems demonstrate the high efficiency of the proposed method.
64#
發(fā)表于 2025-4-1 15:57:00 | 只看該作者
Learning Gestalt Formations for Oscillator Networks,o decided whether input features belong to a common group or have to be separated. The technique is evaluated within different perceptual grouping scenarios and with two kinds of artificial neural networks.
65#
發(fā)表于 2025-4-1 20:05:39 | 只看該作者
66#
發(fā)表于 2025-4-2 02:00:02 | 只看該作者
Learning to Look and Looking to Remember: A Neural-Dynamic Embodied Model for Generation of Saccadieneration of motor signal, adaptation of gaze shift’s amplitude, memory formation, scene exploration, and the coordinate transformations. We demonstrate the functioning of the architecture on a simulated robotic agent and provide a discussion of its implications in terms of neural-dynamic and cognitive modelling.
67#
發(fā)表于 2025-4-2 04:12:51 | 只看該作者
How to Pretrain Deep Boltzmann Machines in Two Stages,ow empirically that the proposed method overcomes the difficulty in training DBMs from randomly initialized parameters and results in a better, or comparable, generative model when compared to the conventional pretraining algorithm.
68#
發(fā)表于 2025-4-2 09:24:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 13:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙井市| 新民市| 平江县| 远安县| 南城县| 酉阳| 博野县| 平阴县| 江川县| 临沧市| 临江市| 宜春市| 岑巩县| 边坝县| 香河县| 淄博市| 林州市| 隆回县| 华亭县| 乌拉特前旗| 屯留县| 海盐县| 都昌县| 舞钢市| 新巴尔虎右旗| 襄汾县| 高邮市| 漳平市| 丹东市| 罗平县| 吉首市| 新昌县| 永胜县| 双鸭山市| 博乐市| 四川省| 偏关县| 阜新市| 龙州县| 河西区| 慈利县|