找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks; Methods and Applicat Petia Koprinkova-Hristova,Valeri Mladenov,Nikola K Conference proceedings 2015 Springer In

[復(fù)制鏈接]
樓主: Inspection
61#
發(fā)表于 2025-4-1 02:06:29 | 只看該作者
Feministische Methodologien und Methodenow empirically that the proposed method overcomes the difficulty in training DBMs from randomly initialized parameters and results in a better, or comparable, generative model when compared to the conventional pretraining algorithm.
62#
發(fā)表于 2025-4-1 09:40:18 | 只看該作者
63#
發(fā)表于 2025-4-1 14:04:11 | 只看該作者
Image Classification with Nonnegative Matrix Factorization Based on Spectral Projected Gradient,s in NMF become large-scale. However, the computational problem can be considerably alleviated if the modified Spectral Projected Gradient (SPG) that belongs to a class of quasi-Newton methods is used. The simulation results presented for the selected classification problems demonstrate the high efficiency of the proposed method.
64#
發(fā)表于 2025-4-1 15:57:00 | 只看該作者
Learning Gestalt Formations for Oscillator Networks,o decided whether input features belong to a common group or have to be separated. The technique is evaluated within different perceptual grouping scenarios and with two kinds of artificial neural networks.
65#
發(fā)表于 2025-4-1 20:05:39 | 只看該作者
66#
發(fā)表于 2025-4-2 02:00:02 | 只看該作者
Learning to Look and Looking to Remember: A Neural-Dynamic Embodied Model for Generation of Saccadieneration of motor signal, adaptation of gaze shift’s amplitude, memory formation, scene exploration, and the coordinate transformations. We demonstrate the functioning of the architecture on a simulated robotic agent and provide a discussion of its implications in terms of neural-dynamic and cognitive modelling.
67#
發(fā)表于 2025-4-2 04:12:51 | 只看該作者
How to Pretrain Deep Boltzmann Machines in Two Stages,ow empirically that the proposed method overcomes the difficulty in training DBMs from randomly initialized parameters and results in a better, or comparable, generative model when compared to the conventional pretraining algorithm.
68#
發(fā)表于 2025-4-2 09:24:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 17:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
旬邑县| 红原县| 海林市| 和林格尔县| 上蔡县| 竹山县| 安溪县| 台中市| 怀集县| 和田县| 青龙| 伊宁市| 平乡县| 东乡县| 京山县| 扶绥县| 邹平县| 安阳市| 灌云县| 陈巴尔虎旗| 新沂市| 昔阳县| 保定市| 开封县| 盐山县| 个旧市| 靖西县| 赣榆县| 郸城县| 琼结县| 石首市| 剑阁县| 民勤县| 九江市| 时尚| 灵寿县| 青海省| 左权县| 广德县| 吴堡县| 广宗县|