找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligent Approaches in Petroleum Geosciences; Constantin Cranganu,Henri Luchian,Mihaela Elena Br Book 20151st edition Spring

[復(fù)制鏈接]
查看: 11615|回復(fù): 45
樓主
發(fā)表于 2025-3-21 18:23:16 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Artificial Intelligent Approaches in Petroleum Geosciences
影響因子2023Constantin Cranganu,Henri Luchian,Mihaela Elena Br
視頻videohttp://file.papertrans.cn/163/162586/162586.mp4
發(fā)行地址Presents intelligent approaches for solving challenging practical problems facing those in the petroleum geosciences and petroleum industry.Offers state-of-the-art working examples and provides the re
圖書封面Titlebook: Artificial Intelligent Approaches in Petroleum Geosciences;  Constantin Cranganu,Henri Luchian,Mihaela Elena Br Book 20151st edition Spring
影響因子.This book presents several intelligent approaches for tackling and solving challenging practical problems facing those in the petroleum geosciences and petroleum industry. Written by experienced academics, this book offers state-of-the-art working examples and provides the reader with exposure to the latest developments in the field of intelligent methods applied to oil and gas research, exploration and production. It also analyzes the strengths and weaknesses of each method presented using benchmarking, whilst also emphasizing essential parameters such as robustness, accuracy, speed of convergence, computer time, overlearning and the role of normalization. The intelligent approaches presented include artificial neural networks, fuzzy logic, active learning method, genetic algorithms and support vector machines, amongst others. .Integration, handling data of immense size and uncertainty, and dealing with risk management are among crucial issues in petroleum geosciences. The problems we have to solve in this domain are becoming too complex to rely on a single discipline for effective solutions and the costs associated with poor predictions (e.g. dry holes) increase. Therefore, ther
Pindex Book 20151st edition
The information of publication is updating

書目名稱Artificial Intelligent Approaches in Petroleum Geosciences影響因子(影響力)




書目名稱Artificial Intelligent Approaches in Petroleum Geosciences影響因子(影響力)學(xué)科排名




書目名稱Artificial Intelligent Approaches in Petroleum Geosciences網(wǎng)絡(luò)公開度




書目名稱Artificial Intelligent Approaches in Petroleum Geosciences網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Artificial Intelligent Approaches in Petroleum Geosciences被引頻次




書目名稱Artificial Intelligent Approaches in Petroleum Geosciences被引頻次學(xué)科排名




書目名稱Artificial Intelligent Approaches in Petroleum Geosciences年度引用




書目名稱Artificial Intelligent Approaches in Petroleum Geosciences年度引用學(xué)科排名




書目名稱Artificial Intelligent Approaches in Petroleum Geosciences讀者反饋




書目名稱Artificial Intelligent Approaches in Petroleum Geosciences讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:06:55 | 只看該作者
On Meta-heuristics in Optimization and Data Analysis. Application to Geosciences, briefly walks through problem solving, touching upon notions such as ., .-., ., ., and the .., and also giving very short introductions into several most popular meta-heuristics. The next two sections are dedicated to evolutionary algorithms and swarm intelligence (SI), two of the main areas of EC.
板凳
發(fā)表于 2025-3-22 04:08:10 | 只看該作者
地板
發(fā)表于 2025-3-22 08:17:58 | 只看該作者
Application of Artificial Neural Networks in Geoscience and Petroleum Industry,m solving to geoscience and petroleum industry problems particularly in case of limited availability or lack of input data. ANN application has become widespread in engineering including geoscience and petroleum engineering because it has shown to be able to produce reasonable outputs for inputs it
5#
發(fā)表于 2025-3-22 09:26:18 | 只看該作者
6#
發(fā)表于 2025-3-22 15:19:52 | 只看該作者
7#
發(fā)表于 2025-3-22 17:11:04 | 只看該作者
8#
發(fā)表于 2025-3-22 22:07:16 | 只看該作者
Improving the Accuracy of Active Learning Method via Noise Injection for Estimating Hydraulic Flow e small sample size problem. Because of small sample size problem, modeling techniques commonly fail to accurately extract the true relationships between the inputs and the outputs used for reservoir properties prediction or modeling. In this paper, small sample size problem is addressed for modelin
9#
發(fā)表于 2025-3-23 03:52:27 | 只看該作者
10#
發(fā)表于 2025-3-23 08:12:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
随州市| 长岛县| 崇州市| 奉贤区| 安国市| 外汇| 台南县| 简阳市| 定结县| 靖远县| 安新县| 皋兰县| 樟树市| 漳平市| 本溪| 万源市| 清新县| 新余市| 黄浦区| 洮南市| 邢台市| 巴塘县| 固始县| 门头沟区| 全州县| 临城县| 宝应县| 中江县| 满城县| 建昌县| 莒南县| 枣强县| 普兰店市| 龙井市| 介休市| 木里| 苗栗县| 黎城县| 神木县| 襄汾县| 库车县|