找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence/Machine Learning in Nuclear Medicine and Hybrid Imaging; Patrick Veit-Haibach,Ken Herrmann Book 2022 The Editor(s)

[復(fù)制鏈接]
樓主: 選民
21#
發(fā)表于 2025-3-25 07:14:25 | 只看該作者
Single Transistor Configurations,hine learning in particular, within the field of healthcare. We argue that, going forward, the deliberation and further development of ethics of AI and machine learning should be grounded more strongly in the field of data ethics than it is the case today. This is because of the specific nature of t
22#
發(fā)表于 2025-3-25 10:56:29 | 只看該作者
Frequency Compensation Techniques,vice organization, improve image quality while reducing patient exposure, and dramatically improve the amount and quality of diagnostic information in our studies. In this chapter, we adopt the point of view of the nuclear medicine physician. We discuss the biggest and most predictable benefits of A
23#
發(fā)表于 2025-3-25 13:32:33 | 只看該作者
24#
發(fā)表于 2025-3-25 16:30:41 | 只看該作者
25#
發(fā)表于 2025-3-25 22:08:22 | 只看該作者
Legal and Ethical Aspects of Machine Learning: Who Owns the Data?he digital data that enable machine learning and artificial intelligence. We then turn to the question of ownership, discussing what ownership means, and can mean, in the context of digital data, and who can legitimately own digital data used in and for imaging.
26#
發(fā)表于 2025-3-26 01:26:09 | 只看該作者
Implementing Digital Real-Time Servos,haracteristics of the development process and validation to finally detail how the process can be applied in hybrid modalities where it is highly relevant to combine the spatial information with the functional one.
27#
發(fā)表于 2025-3-26 05:21:45 | 只看該作者
28#
發(fā)表于 2025-3-26 09:45:06 | 只看該作者
29#
發(fā)表于 2025-3-26 15:14:53 | 只看該作者
30#
發(fā)表于 2025-3-26 18:27:03 | 只看該作者
Introduction to Feedback Control,ing and to predict clinical prognosis. Like with other advance statistical methods, the accuracy and generalizability of AI/DL methods is enhanced using large and heterogenous datasets to develop robust AI/DL models and applications that can transform the field of healthcare, hybrid and molecular imaging.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 00:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁南县| 沅江市| 柯坪县| 札达县| 峨山| 科技| 鄱阳县| 揭东县| 岱山县| 石柱| 十堰市| 乌什县| 沂源县| 罗平县| 陈巴尔虎旗| 沛县| 星子县| 沐川县| 清涧县| 西宁市| 怀柔区| 满洲里市| 晋城| 永新县| 泰州市| 惠来县| 阿荣旗| 满城县| 米脂县| 麻江县| 兴仁县| 石狮市| 乌拉特中旗| 额敏县| 米易县| 抚顺市| 红原县| 江阴市| 长沙县| 客服| 荔浦县|