找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence. ECAI 2023 International Workshops; XAI^3, TACTIFUL, XI- S?awomir Nowaczyk,Przemys?aw Biecek,Vania Dimitrov Confere

[復(fù)制鏈接]
樓主: 與生
41#
發(fā)表于 2025-3-28 16:47:55 | 只看該作者
42#
發(fā)表于 2025-3-28 19:11:52 | 只看該作者
A. M. Gaines,B. A. Peterson,O. F. Mendoza models by generating human-understandable explanations. The existing literature encompasses a diverse range of techniques, each relying on specific theoretical assumptions and possessing its own advantages and disadvantages. Amongst the available choices, hypercube-based SKE techniques are notable
43#
發(fā)表于 2025-3-29 01:11:57 | 只看該作者
Analog weight adaptation hardware,and potential of interpretable machine learning, in particular PIP-Net, for automated diagnosis support on real-world medical imaging data. PIP-Net learns human-understandable prototypical image parts and we evaluate its accuracy and interpretability for fracture detection and skin cancer diagnosis.
44#
發(fā)表于 2025-3-29 06:08:45 | 只看該作者
The Vector Decomposition Method,hods, they frequently assign importance to features which lack causal influence on the outcome variable. Selecting causally relevant features among those identified as relevant by these methods, or even before model training, would offer a solution. Feature selection methods utilizing information th
45#
發(fā)表于 2025-3-29 08:37:15 | 只看該作者
https://doi.org/10.1007/978-3-319-76864-9is paper focuses on using model-based trees as surrogate models which partition the feature space into interpretable regions via decision rules. Within each region, interpretable models based on additive main effects are used to approximate the behavior of the black box model, striking for an optima
46#
發(fā)表于 2025-3-29 11:51:25 | 只看該作者
47#
發(fā)表于 2025-3-29 19:18:06 | 只看該作者
48#
發(fā)表于 2025-3-29 23:10:12 | 只看該作者
49#
發(fā)表于 2025-3-30 01:47:37 | 只看該作者
Artificial Intelligence. ECAI 2023 International Workshops978-3-031-50396-2Series ISSN 1865-0929 Series E-ISSN 1865-0937
50#
發(fā)表于 2025-3-30 06:57:44 | 只看該作者
https://doi.org/10.1007/978-3-031-50396-2Artificial Intelligence; Machine Learning; Multi-Agent Systems; Reliability of Artificial Intelligence;
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 04:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
革吉县| 禄劝| 全南县| 宁都县| 宜君县| 吉安县| 讷河市| 繁昌县| 牙克石市| 澄江县| 益阳市| 房产| 名山县| 福清市| 观塘区| 泰和县| 潼南县| 定西市| 铜鼓县| 奎屯市| 六安市| 改则县| 阿克苏市| 肇源县| 松潘县| 台中县| 昌黎县| 阿拉善左旗| 万宁市| 彝良县| 葵青区| 孟津县| 乳山市| 东海县| 长宁县| 元江| 长丰县| 印江| 孝昌县| 萨迦县| 武汉市|