找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence. ECAI 2023 International Workshops; XAI^3, TACTIFUL, XI- S?awomir Nowaczyk,Przemys?aw Biecek,Vania Dimitrov Confere

[復(fù)制鏈接]
樓主: 與生
11#
發(fā)表于 2025-3-23 13:36:57 | 只看該作者
12#
發(fā)表于 2025-3-23 15:03:42 | 只看該作者
13#
發(fā)表于 2025-3-23 18:24:29 | 只看該作者
14#
發(fā)表于 2025-3-24 00:15:24 | 只看該作者
Temporal Saliency Detection Towards Explainable Transformer-Based Timeseries Forecastingllenge, especially towards explainability. Focusing on commonly used saliency maps in explaining DNN in general, our quest is to build attention-based architecture that can automatically encode saliency-related temporal patterns by establishing connections with appropriate attention heads. Hence, th
15#
發(fā)表于 2025-3-24 05:07:34 | 只看該作者
Explaining Taxi Demand Prediction Models Based on?Feature Importanceem, which is difficult due to its multivariate input and output space. As these models are composed of multiple layers, their predictions become opaque. This opaqueness makes debugging, optimising, and using the models difficult. To address this, we propose the usage of eXplainable AI (XAI) – featur
16#
發(fā)表于 2025-3-24 09:11:46 | 只看該作者
Bayesian CAIPI: A Probabilistic Approach to?Explanatory and?Interactive Machine Learningart algorithm, captures the user feedback and iteratively biases a data set toward a correct decision-making mechanism using counterexamples. The counterexample generation procedure relies on hand-crafted data augmentation and might produce implausible instances. We propose Bayesian CAIPI that embed
17#
發(fā)表于 2025-3-24 13:02:21 | 只看該作者
18#
發(fā)表于 2025-3-24 14:49:30 | 只看該作者
A. M. Gaines,B. A. Peterson,O. F. Mendoza augment the predictive capabilities of hypercube-based SKE techniques, striving for a completeness rate of 100%. Furthermore, the study includes experiments that assess the effectiveness of the proposed enhancements.
19#
發(fā)表于 2025-3-24 20:40:38 | 只看該作者
https://doi.org/10.1007/978-3-319-76864-9 ability to generate such surrogate models. We investigate fidelity, interpretability, stability, and the algorithms’ capability to capture interaction effects through appropriate splits. Based on our comprehensive analyses, we finally provide an overview of user-specific recommendations.
20#
發(fā)表于 2025-3-25 02:48:41 | 只看該作者
https://doi.org/10.1007/978-3-319-76321-7where we distinguish ones from sevens, we show that Bayesian CAIPI matches the predictive accuracy of both, traditional CAIPI and default deep learning. Moreover, it outperforms both in terms of explanation quality.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 00:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
秀山| 镶黄旗| 杭锦旗| 仪陇县| 磐安县| 灵川县| 志丹县| 梅州市| 遂川县| 城口县| 白银市| 历史| 大英县| 新丰县| 武隆县| 苍南县| 嘉善县| 兴和县| 琼海市| 连江县| 康保县| 华阴市| 洞口县| 牙克石市| 岳普湖县| 应城市| 同江市| 芒康县| 大同县| 扎囊县| 和硕县| 沾益县| 万全县| 昆明市| 山东| 湖州市| 宁城县| 分宜县| 海南省| 永康市| 汝州市|