找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence on Fashion and Textiles; Proceedings of the A Wai Keung Wong Conference proceedings 2019 Springer Nature Switzerlan

[復(fù)制鏈接]
樓主: 相似
41#
發(fā)表于 2025-3-28 18:15:28 | 只看該作者
Costume Expert Recommendation System Based on Physical Features,erence engine, namely, blackboard model algorithms to obtain the recommended costume that suits the physical features of the customer. Therefore, the proposed system provides customers an intelligent costume recommendation strategy in accordance with SVM and Expert System.
42#
發(fā)表于 2025-3-28 19:36:34 | 只看該作者
Sparse Discriminant Principle Component Analysis,vatives, the number of the modified PCs of SDPCA is not limited by the number of class, namely, SDPCA can address the small-class problem in LSR based methods. To solve the optimization problem, we also propose a new algorithm. Experimental results on product dataset, face dataset and character dataset demonstrate the effectiveness of SDPCA.
43#
發(fā)表于 2025-3-29 02:13:32 | 只看該作者
The CF+TF-IDF TV-Program Recommendation,is to infer users’ preference from their viewing habits and the program type they choose. By using CF+TF-IDF, we build a TV-program recommendation model, aiming at improving users’ viewing experience.
44#
發(fā)表于 2025-3-29 03:34:15 | 只看該作者
45#
發(fā)表于 2025-3-29 07:18:10 | 只看該作者
Sikhar Patranabis,Debdeep Mukhopadhyayages, the network model can efficiently extract discriminative features and achieve a retrieval accuracy of 99.89% on our test set. This performance maintains well when simpler deep architecture is used, but decreases quickly if the contents of fed fabric image are reduced.
46#
發(fā)表于 2025-3-29 12:31:36 | 只看該作者
47#
發(fā)表于 2025-3-29 18:33:33 | 只看該作者
Network Configurations and Models,clothing knowledge base and clarify the recommendation rules. Considering the characteristics of the customers and the selection criteria, this system can make personalized clothing recommendation scheme for customers and ensure the rationality of the recommendation results.
48#
發(fā)表于 2025-3-29 22:40:04 | 只看該作者
Sikhar Patranabis,Debdeep Mukhopadhyayated information to the classic itti visual attention model, we achieve the multi-object attention model of the clothing style. And based on this we implemented the autonomous development of clothing style recognition by Multi-Layer In-place Learning Network (MILN in short). Experiments prove the feasibility and effectiveness of our model.
49#
發(fā)表于 2025-3-29 23:59:35 | 只看該作者
A Clothing Recommendation System Based on Expert Knowledge,clothing knowledge base and clarify the recommendation rules. Considering the characteristics of the customers and the selection criteria, this system can make personalized clothing recommendation scheme for customers and ensure the rationality of the recommendation results.
50#
發(fā)表于 2025-3-30 06:31:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 11:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台南县| 乌兰察布市| 霍州市| 江安县| 年辖:市辖区| 巴楚县| 青冈县| 江孜县| 黎平县| 自贡市| 清河县| 肥西县| 新密市| 嘉兴市| 正安县| 蛟河市| 曲阳县| 江川县| 德令哈市| 甘肃省| 龙陵县| 荣成市| 南和县| 秦安县| 通辽市| 手游| 蒙城县| 定日县| 朝阳市| 丁青县| 高尔夫| 甘德县| 噶尔县| 山阳县| 苏州市| 黄平县| 那曲县| 崇仁县| 漠河县| 轮台县| 山阴县|