找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence in Vision-Based Structural Health Monitoring; Khalid M. Mosalam,Yuqing Gao Book 2024 The Editor(s) (if applicable)

[復(fù)制鏈接]
查看: 14793|回復(fù): 52
樓主
發(fā)表于 2025-3-21 16:49:32 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Artificial Intelligence in Vision-Based Structural Health Monitoring
影響因子2023Khalid M. Mosalam,Yuqing Gao
視頻videohttp://file.papertrans.cn/163/162526/162526.mp4
發(fā)行地址Comprehensive review of the rapidly expanding field of vision-based SHM using artificial intelligence approaches.Includes comprehensive details about the procedure of conducting AI approaches.With exa
學(xué)科分類Synthesis Lectures on Mechanical Engineering
圖書封面Titlebook: Artificial Intelligence in Vision-Based Structural Health Monitoring;  Khalid M. Mosalam,Yuqing Gao Book 2024 The Editor(s) (if applicable)
影響因子.This book provides a comprehensive coverage of the state-of-the-art artificial intelligence (AI) technologies in vision-based structural health monitoring (SHM). In this data explosion epoch, AI-aided SHM and rapid damage assessment after natural hazards have become of great interest in civil and structural engineering, where using machine and deep learning in vision-based SHM brings new research direction. As researchers begin to apply these concepts to the structural engineering domain, especially in SHM, several critical scientific questions need to be addressed: (1) What can AI solve for the SHM problems? (2) What are the relevant AI technologies? (3) What is the effectiveness of the AI approaches in vision-based SHM? (4) How to improve the adaptability of the AI approaches for practical projects? (5) How to build a resilient AI-aided disaster prevention system making use of the vision-based SHM? .This book introduces and implements the state-of-the-art machine learning and deep learning technologies for vision-based SHM applications. Specifically, corresponding to the above-mentioned scientific questions, it consists of: (1) motivation, background & progress of AI-aided visio
Pindex Book 2024
The information of publication is updating

書目名稱Artificial Intelligence in Vision-Based Structural Health Monitoring影響因子(影響力)




書目名稱Artificial Intelligence in Vision-Based Structural Health Monitoring影響因子(影響力)學(xué)科排名




書目名稱Artificial Intelligence in Vision-Based Structural Health Monitoring網(wǎng)絡(luò)公開度




書目名稱Artificial Intelligence in Vision-Based Structural Health Monitoring網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Artificial Intelligence in Vision-Based Structural Health Monitoring被引頻次




書目名稱Artificial Intelligence in Vision-Based Structural Health Monitoring被引頻次學(xué)科排名




書目名稱Artificial Intelligence in Vision-Based Structural Health Monitoring年度引用




書目名稱Artificial Intelligence in Vision-Based Structural Health Monitoring年度引用學(xué)科排名




書目名稱Artificial Intelligence in Vision-Based Structural Health Monitoring讀者反饋




書目名稱Artificial Intelligence in Vision-Based Structural Health Monitoring讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:14:24 | 只看該作者
Hugo W. Moser,Gerald V. RaymondStructural damage segmentation is another key task in vision-based SHM. As introduced in Chap.?2, images are labeled pixel by pixel and segmentation algorithms and models aim to recognize all pixels, group a region of pixels with the same label, and assign a class label for each region to match the ground truth.
板凳
發(fā)表于 2025-3-22 04:04:49 | 只看該作者
地板
發(fā)表于 2025-3-22 06:04:51 | 只看該作者
5#
發(fā)表于 2025-3-22 11:20:06 | 只看該作者
Progress in Inflammation ResearchIn previous chapters, promising results have been achieved using AI, e.g., DL-based models, in vision-based SHM problems. However, the internal working principle in AI, especially for the DL model, is hard to understand by a human and is treated as a discouraging “black box”, especially for the inquisitive engineers.
6#
發(fā)表于 2025-3-22 15:39:54 | 只看該作者
Structural Vision Data Collection and DatasetImages and videos are the two most commonly used data types in vision-based SHM. The image represents the instantaneous state in the structure and the video provides continuous changes of the state of the structure, which is composed of a sequence of frames.
7#
發(fā)表于 2025-3-22 18:48:09 | 只看該作者
8#
發(fā)表于 2025-3-22 22:34:01 | 只看該作者
9#
發(fā)表于 2025-3-23 03:40:05 | 只看該作者
Semi-Supervised LearningPrevious chapters demonstrate the effectiveness of ML and DL under the supervised learning setting, where all training data are well-labeled, refer to Sect.?3.1.
10#
發(fā)表于 2025-3-23 06:46:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 00:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
秀山| 县级市| 翼城县| 芒康县| 永定县| 保靖县| 库尔勒市| 冕宁县| 大渡口区| 广西| 宁夏| 栾城县| 五台县| 西贡区| 元谋县| 驻马店市| 淮阳县| 甘南县| 洪雅县| 丰城市| 海淀区| 翁牛特旗| 商洛市| 黄山市| 伊宁县| 井冈山市| 波密县| 邯郸市| 平度市| 龙南县| 衡山县| 福海县| 青龙| 辉南县| 泰和县| 泗洪县| 顺昌县| 濉溪县| 四平市| 精河县| 名山县|