找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence in Radiation Therapy; First International Dan Nguyen,Lei Xing,Steve Jiang Conference proceedings 2019 Springer Nat

[復(fù)制鏈接]
樓主: 空隙
11#
發(fā)表于 2025-3-23 13:11:06 | 只看該作者
Individualized 3D Dose Distribution Prediction Using Deep Learning,tion. Qualitative measurements have showed analogous dose distributions and DVH curves compared to the true dose distribution. Quantitative measurements have demonstrated that our model can precisely predict the dose distribution with various trade-offs for different patients, with the largest mean
12#
發(fā)表于 2025-3-23 17:32:58 | 只看該作者
Deep Generative Model-Driven Multimodal Prostate Segmentation in Radiotherapy,thod includes a multi-task learning framework that combines a convolutional feature extraction and an embedded regression and classification based shape modeling. This enables the network to predict the deformable shape of an organ. We show that generative neural network-based shape modeling trained
13#
發(fā)表于 2025-3-23 18:13:42 | 只看該作者
14#
發(fā)表于 2025-3-24 02:01:02 | 只看該作者
CBCT-Based Synthetic MRI Generation for CBCT-Guided Adaptive Radiotherapy, CBCT to MRI, which constrains the model by forcing a one-to-one mapping. A fully convolution neural network (FCN) with U-Net architecture is used in the generator to enable end-to-end CBCT-to-MRI transformations. Dense blocks and self-attention strategy are used to learn the information to well rep
15#
發(fā)表于 2025-3-24 05:42:40 | 只看該作者
https://doi.org/10.1057/978-1-137-46178-0ss this, a reinforcement learning application of guided Monte Carlo tree search (GTS) was implemented, coupled with SL to guide the traversal through the tree, and update the fitness values of its nodes. To test the feasibility of GTS, 13 test prostate cancer patients were evaluated. Our results sho
16#
發(fā)表于 2025-3-24 09:32:18 | 只看該作者
Orienting Frameworks and Concepts, symmetry in calculating image saliency of MRI images. The ratio of mean saliency value (RSal) from the propagated nodal volume on a weekly image to the mean saliency value of the pre-treatment nodal volume was calculated to assess whether the nodal volume shrank significantly. We evaluated our meth
17#
發(fā)表于 2025-3-24 13:18:55 | 只看該作者
18#
發(fā)表于 2025-3-24 17:31:44 | 只看該作者
Orienting Frameworks and Concepts,ed by using the deep learning model and the actual position of the prostate were compared quantitatively. Differences between the predicted target positions using DNN and their actual positions are (mean ± standard deviation) . mm, . mm, and 1.64 ± 0.28 mm in anterior-posterior, lateral, and oblique
19#
發(fā)表于 2025-3-24 19:00:10 | 只看該作者
20#
發(fā)表于 2025-3-24 23:15:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 09:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
思南县| 荣成市| 苍溪县| 阿尔山市| 贵州省| 迁安市| 廊坊市| 余庆县| 凤冈县| 西贡区| 嘉禾县| 嘉峪关市| 鄂州市| 江孜县| 福贡县| 扬州市| 寻乌县| 襄垣县| 通州区| 青阳县| 彰化市| 达日县| 莲花县| 东平县| 宁陕县| 正蓝旗| 安新县| 温泉县| 郎溪县| 淳安县| 岑溪市| 喜德县| 镶黄旗| 隆德县| 泰兴市| 新营市| 朝阳区| 昆山市| 湖北省| 台前县| 榆林市|