找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence in Dentistry; Khalid Shaikh,Sreelekshmi Vivek Bekal,Lubna Abdel Book 2023 The Editor(s) (if applicable) and The A

[復(fù)制鏈接]
查看: 30422|回復(fù): 40
樓主
發(fā)表于 2025-3-21 16:26:38 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Artificial Intelligence in Dentistry
影響因子2023Khalid Shaikh,Sreelekshmi Vivek Bekal,Lubna Abdel
視頻videohttp://file.papertrans.cn/163/162420/162420.mp4
發(fā)行地址Looks at recent advances in dental and oral health.Discusses AI applications in dentistry.Includes case studies
圖書封面Titlebook: Artificial Intelligence in Dentistry;  Khalid Shaikh,Sreelekshmi Vivek Bekal,Lubna Abdel  Book 2023 The Editor(s) (if applicable) and The A
影響因子This book provides an introduction to next-generation applications and technologies for improving diagnostic accuracy and prediction of treatment outcomes in dentistry through the use of artificial intelligence (AI) and machine learning (ML). The authors attempt to bridge the gap between dental research and global health outcomes, as well as provide a comprehensive guide to general and clinical aspects of dental and oral health issues and the etiology, prevalence, assessment, and management of these conditions. This book combines engineering applications and medical healthcare and will be an important reference for researchers, biomedical engineers, dental students, and dental practitioners.?
Pindex Book 2023
The information of publication is updating

書目名稱Artificial Intelligence in Dentistry影響因子(影響力)




書目名稱Artificial Intelligence in Dentistry影響因子(影響力)學(xué)科排名




書目名稱Artificial Intelligence in Dentistry網(wǎng)絡(luò)公開度




書目名稱Artificial Intelligence in Dentistry網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Artificial Intelligence in Dentistry被引頻次




書目名稱Artificial Intelligence in Dentistry被引頻次學(xué)科排名




書目名稱Artificial Intelligence in Dentistry年度引用




書目名稱Artificial Intelligence in Dentistry年度引用學(xué)科排名




書目名稱Artificial Intelligence in Dentistry讀者反饋




書目名稱Artificial Intelligence in Dentistry讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:46:20 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:03:48 | 只看該作者
Most Common Oral Health Conditions,er providing a clear insight on the prevalence of oral diseases, this chapter elaborates on the aetiology, classification, diagnosis and treatment aspects of conditions like dental caries, periodontal diseases, oral cancer, oral manifestation HIV infection, oro-dental trauma, NOMA, cleft lip & palat
地板
發(fā)表于 2025-3-22 06:23:02 | 只看該作者
Advancements in Dentistry,cements in Dentistry succeeded by the review of the latest technologies. This chapter divulges the various notions that steer the future of Dentistry like Artificial Intelligence, Smart Toothbrush, Augmented Reality, Virtual Reality, Virtual patients, Teledentistry, Smart Teeth, 3D printing, Intra o
5#
發(fā)表于 2025-3-22 10:29:24 | 只看該作者
6#
發(fā)表于 2025-3-22 15:00:38 | 只看該作者
Artificial Intelligence-Based Dental Diseases Through X-Ray Images Using Entropy CNN-Based and Supps. AI technology has had a significant impact on the health-care business due to the need for precise diagnosis and enhanced patient care. Artificial intelligence has a long way to go in the fields of dentistry and medicine. We proposed three classes for dental classification in this paper: “cavity,
7#
發(fā)表于 2025-3-22 18:00:04 | 只看該作者
8#
發(fā)表于 2025-3-22 23:40:47 | 只看該作者
Familie: Sozialwissenschaftliche Konstrukte,map. Eventually, to forecast the perfect match for the classification process, support value-based fusion matching is used in the classification phase. When compared to existing approaches, the accuracy is improved to 99.7%.
9#
發(fā)表于 2025-3-23 01:30:58 | 只看該作者
Artificial Intelligence-Based Dental Diseases Through X-Ray Images Using Entropy CNN-Based and Suppmap. Eventually, to forecast the perfect match for the classification process, support value-based fusion matching is used in the classification phase. When compared to existing approaches, the accuracy is improved to 99.7%.
10#
發(fā)表于 2025-3-23 09:00:06 | 只看該作者
ction to next-generation applications and technologies for improving diagnostic accuracy and prediction of treatment outcomes in dentistry through the use of artificial intelligence (AI) and machine learning (ML). The authors attempt to bridge the gap between dental research and global health outcom
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 14:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
铅山县| 三河市| 留坝县| 华容县| 惠来县| 章丘市| 自贡市| 时尚| 闽侯县| 通许县| 六盘水市| 策勒县| 平和县| 天等县| 离岛区| 霍邱县| 哈巴河县| 高雄县| 竹山县| 泰和县| 繁峙县| 东乌珠穆沁旗| 荥经县| 长宁区| 淮南市| 重庆市| 铜梁县| 德兴市| 称多县| 嘉善县| 石渠县| 景东| 虹口区| 桃江县| 崇信县| 长岭县| 金阳县| 任丘市| 黄石市| 沙坪坝区| 前郭尔|