找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence in Data and Big Data Processing; Proceedings of ICABD Ngoc Hoang Thanh Dang,Yu-Dong Zhang,Bo-Hao Chen Conference pr

[復(fù)制鏈接]
查看: 45290|回復(fù): 47
樓主
發(fā)表于 2025-3-21 17:10:02 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Artificial Intelligence in Data and Big Data Processing
期刊簡(jiǎn)稱Proceedings of ICABD
影響因子2023Ngoc Hoang Thanh Dang,Yu-Dong Zhang,Bo-Hao Chen
視頻videohttp://file.papertrans.cn/163/162418/162418.mp4
發(fā)行地址Provides outcome of International Conference on “Artificial Intelligence and Big Data in Digital Era”.Presents the best reviewed papers of ICABDE 2021.Written by experts in the field
學(xué)科分類Lecture Notes on Data Engineering and Communications Technologies
圖書封面Titlebook: Artificial Intelligence in Data and Big Data Processing; Proceedings of ICABD Ngoc Hoang Thanh Dang,Yu-Dong Zhang,Bo-Hao Chen Conference pr
影響因子.The book presents studies related to artificial intelligence (AI) and its applications to process and analyze data and big data to create machines or software that can better understand business behavior, industry activities, and human health. The studies were presented at “The 2021 International Conference on Artificial Intelligence and Big Data in Digital Era” (ICABDE 2021), which was held in Ho Chi Minh City, Vietnam, during December 18-19, 2021. .The studies are pointing toward the famous slogan in technology “Make everything smarter,” i.e., creating machines that can understand and can communicate with humans, and they must act like humans in different aspects such as vision, communication, thinking, feeling, and acting..“A computer would deserve to be called intelligent if it could deceive a human into believing that it was human”. . —Alan Turing.
Pindex Conference proceedings 2022
The information of publication is updating

書目名稱Artificial Intelligence in Data and Big Data Processing影響因子(影響力)




書目名稱Artificial Intelligence in Data and Big Data Processing影響因子(影響力)學(xué)科排名




書目名稱Artificial Intelligence in Data and Big Data Processing網(wǎng)絡(luò)公開度




書目名稱Artificial Intelligence in Data and Big Data Processing網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Artificial Intelligence in Data and Big Data Processing被引頻次




書目名稱Artificial Intelligence in Data and Big Data Processing被引頻次學(xué)科排名




書目名稱Artificial Intelligence in Data and Big Data Processing年度引用




書目名稱Artificial Intelligence in Data and Big Data Processing年度引用學(xué)科排名




書目名稱Artificial Intelligence in Data and Big Data Processing讀者反饋




書目名稱Artificial Intelligence in Data and Big Data Processing讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:30:38 | 只看該作者
Determinanten der Familienmodellwahl,mance. To improve convergence and performance in object detection, many researchers have modified and proposed Intersection over Union (IoU) loss functions. In existing researches, the loss functions have some main drawbacks. Firstly, the IoU-based loss functions are inefficient enough to perform th
板凳
發(fā)表于 2025-3-22 01:39:16 | 只看該作者
https://doi.org/10.1007/978-3-531-91362-9t variable. To improve the performance, we consider resampling the dataset and ensembling the classifiers. The benchmarks are taken from the best performance among six considered classifiers. Resampling the dataset includes oversampling and undersampling. The performance of ensemble classifiers are
地板
發(fā)表于 2025-3-22 06:18:39 | 只看該作者
Determinanten der Familienmodellwahl,It establishes a routine that informs the student of their responsibilities throughout the semester. Creating a well-constructed course schedule takes a long time and a lot of human effort when managers have to put up subjects, classes, lecturers into constrained duration. To solve these issues, we
5#
發(fā)表于 2025-3-22 09:57:43 | 只看該作者
6#
發(fā)表于 2025-3-22 16:14:27 | 只看該作者
7#
發(fā)表于 2025-3-22 21:07:20 | 只看該作者
https://doi.org/10.1007/978-3-531-91362-9ious research applies a semantic parser to transform a sentence into a semantic graph, while this heuristic approach can be regarded as the data augmentation technique. Following this idea, this manuscript investigates the Dependency Parsing graph via GNNs to improve the current performance of the T
8#
發(fā)表于 2025-3-22 23:52:22 | 只看該作者
Determinanten der Familienmodellwahl,s time and effort. This paper investigates several text summarization models based on neural networks, including extractive summarization, abstractive summarization, and abstractive summarization based on the re-writer approach and bottom-up approach. We perform experiments on the CTUNLPSum dataset
9#
發(fā)表于 2025-3-23 03:21:43 | 只看該作者
10#
發(fā)表于 2025-3-23 06:30:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 22:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐东| 宁波市| 华阴市| 临汾市| 拜泉县| 囊谦县| 张家口市| 雅江县| 抚顺县| 舟山市| 九江县| 临沂市| 五常市| 海兴县| 吉木萨尔县| 达孜县| 六枝特区| 白河县| 革吉县| 工布江达县| 进贤县| 凉山| 武汉市| 出国| 宜宾县| 喀喇| 邵阳县| 广平县| 思南县| 仁化县| 锡林郭勒盟| 曲沃县| 诏安县| 那曲县| 临潭县| 四平市| 杂多县| 涞源县| 互助| 旬邑县| 株洲县|