找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence in China; Proceedings of the 3 Qilian Liang,Wei Wang,Zhenyu Na Conference proceedings 2022 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: 吞食
51#
發(fā)表于 2025-3-30 09:10:54 | 只看該作者
Reverse Attention U-Net for Brain Grey Matter Nuclei Segmentation,ns while highlighting background, which guides the network to explore the missing nuclei parts sequentially. Experimental results on our nuclei dataset imply that the RAU-Net performs favorably against the state-of-the-art methods.
52#
發(fā)表于 2025-3-30 12:24:53 | 只看該作者
53#
發(fā)表于 2025-3-30 16:56:19 | 只看該作者
Small-Object Detection with Super Resolution Embedding,f-the-art detector (YOLOv3). Extensive experiments on a public (car overhead with context) dataset and another self-assembled airport surface dataset show superior performance of our method compared to the standalone state-of-the-art object detectors.
54#
發(fā)表于 2025-3-31 00:27:11 | 只看該作者
55#
發(fā)表于 2025-3-31 04:26:20 | 只看該作者
Autoencoder-Based Baseline Parameterized by Central Limit Theorem for ICS Cybersecurity,d has stable interactive features. In the paper, we analyze the ICS network interaction and construct a parameterized baseline by an autoencoder to detect the intrusion. The experiment with an open ICS dataset shows that this baseline could achieve intrusion detection accuracy above 90% and the false alarm rate below 5%.
56#
發(fā)表于 2025-3-31 06:33:13 | 只看該作者
Image Compression Based on Mixed Matrix Decomposition of NMF and SVD,work on images. The experimental results demenstrated that this approach based on mixed matrix decomposition had a CR with larger dynamic range through flexible parameter adjustment and the PSNR of the restored image is 29?dB–36?dB. It verifiy that this method is effective.
57#
發(fā)表于 2025-3-31 12:01:10 | 只看該作者
Information Extraction of Air-Traffic Control Instructions via Pre-trained Models,ts of handcraft annotations. The large scale pre-trained model (PTMs) can solve this problem by “pre-training” and “fine-tuning”. This paper proposes: 1) pre-trained models to extract information from few scale ATC instructions; 2) the probing task to find which layer of model achieves the best performance of information extraction task.
58#
發(fā)表于 2025-3-31 16:40:35 | 只看該作者
Medical Image Segmentation Using Transformer,amed TransHarDNet. HarDNet, which is a low memory traffic CNN. We combine it as backbone with Transformer. Our network enables the global semantic context information and low-level spatial details of the input image to be captured more effectively. We evaluate the effectiveness of the proposed network on five medical image datasets.
59#
發(fā)表于 2025-3-31 19:31:52 | 只看該作者
60#
發(fā)表于 2025-3-31 22:45:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 03:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南川市| 噶尔县| 罗定市| 师宗县| 凤阳县| 商河县| 礼泉县| 柏乡县| 龙游县| 铜鼓县| 高陵县| 中卫市| 民县| 南康市| 绵竹市| 彭州市| 静宁县| 南溪县| 济阳县| 松桃| 遵义县| 金溪县| 兰州市| 富源县| 南宫市| 洱源县| 安阳市| 博野县| 正阳县| 涿鹿县| 苍南县| 盐池县| 晋城| 连江县| 土默特左旗| 甘南县| 桐梓县| 镇康县| 兰坪| 桓仁| 顺平县|