找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence for Scientific Discoveries; Extracting Physical Raban Iten Book 2023 The Editor(s) (if applicable) and The Author(

[復(fù)制鏈接]
查看: 24593|回復(fù): 54
樓主
發(fā)表于 2025-3-21 16:39:09 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Artificial Intelligence for Scientific Discoveries
期刊簡稱Extracting Physical
影響因子2023Raban Iten
視頻videohttp://file.papertrans.cn/163/162390/162390.mp4
發(fā)行地址Provides an overview for scientists of how machine learning can help to discover physical concepts.Introduces a general framework that can help the reader to extract relevant parameters from experimen
圖書封面Titlebook: Artificial Intelligence for Scientific Discoveries; Extracting Physical  Raban Iten Book 2023 The Editor(s) (if applicable) and The Author(
影響因子. .Will research soon be done by artificial intelligence, thereby making human researchers superfluous? This book explains modern approaches to discovering physical concepts with machine learning and elucidates their strengths and limitations. The?automation?of the creation of experimental setups and physical models, as well as model testing are discussed. The focus of the book is the?automation?of an important step of the model creation, namely finding a minimal number of natural parameters that contain sufficient information to make predictions about the considered system. The basic idea of this approach is to employ a deep learning architecture, SciNet, to model a simplified version of a physicist‘s reasoning process. SciNet finds the relevant physical parameters, like the mass of a particle, from experimental data and makes predictions based on the parameters found. The author demonstrates how to extract conceptual information from such parameters, e.g., Copernicus‘ conclusion that the solar system is heliocentric.?..?.
Pindex Book 2023
The information of publication is updating

書目名稱Artificial Intelligence for Scientific Discoveries影響因子(影響力)




書目名稱Artificial Intelligence for Scientific Discoveries影響因子(影響力)學(xué)科排名




書目名稱Artificial Intelligence for Scientific Discoveries網(wǎng)絡(luò)公開度




書目名稱Artificial Intelligence for Scientific Discoveries網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Artificial Intelligence for Scientific Discoveries被引頻次




書目名稱Artificial Intelligence for Scientific Discoveries被引頻次學(xué)科排名




書目名稱Artificial Intelligence for Scientific Discoveries年度引用




書目名稱Artificial Intelligence for Scientific Discoveries年度引用學(xué)科排名




書目名稱Artificial Intelligence for Scientific Discoveries讀者反饋




書目名稱Artificial Intelligence for Scientific Discoveries讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:29:39 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:51:51 | 只看該作者
Creating Experimental Setupse the behavior of such systems is often unintuitive. In this chapter, we discuss how a special kind of reinforcement learning, called projective simulation, can help to automate the creation of experimental setups.
地板
發(fā)表于 2025-3-22 06:19:56 | 只看該作者
5#
發(fā)表于 2025-3-22 12:01:29 | 只看該作者
Model Testingsting a model and discovering its limitations is crucial for improving future models and guiding research. However, when there is no alternative model available, how can we determine a model’s limitations from test data alone? This chapter proposes a solution using machine learning to construct a mo
6#
發(fā)表于 2025-3-22 15:30:05 | 只看該作者
7#
發(fā)表于 2025-3-22 19:01:34 | 只看該作者
Future Research Directions and?Further Readingion of searching for strategies to collect relevant observation data. The second discusses possible directions to tackle the challenge of interpreting representations extracted from experimental data in the case where we do not have a hypothesized representation.
8#
發(fā)表于 2025-3-22 23:32:58 | 只看該作者
9#
發(fā)表于 2025-3-23 02:01:36 | 只看該作者
10#
發(fā)表于 2025-3-23 06:58:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 16:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
墨脱县| 荆州市| 藁城市| 吕梁市| 祥云县| 仪陇县| 南陵县| 临江市| 旺苍县| 阿拉尔市| 永登县| 安福县| 措勤县| 佛教| 祥云县| 岳普湖县| 柞水县| 波密县| 利川市| 文山县| 犍为县| 逊克县| 龙山县| 东方市| 张北县| 黄龙县| 阳新县| 凤阳县| 伊金霍洛旗| 迁西县| 永仁县| 武隆县| 丽水市| 延川县| 浑源县| 台山市| 时尚| 阳江市| 万宁市| 麻栗坡县| 霞浦县|