找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence for Robotics and Autonomous Systems Applications; Ahmad Taher Azar,Anis Koubaa Book 2023 The Editor(s) (if applica

[復(fù)制鏈接]
樓主: Goiter
11#
發(fā)表于 2025-3-23 12:58:29 | 只看該作者
https://doi.org/10.1007/978-3-642-61985-4g with their uses. Additionally, the chapter discusses extensive machine learning techniques such as machine learning for robotics. And finally, a discussion about the issues and future of artificial intelligence applications in robotics.
12#
發(fā)表于 2025-3-23 15:31:28 | 只看該作者
https://doi.org/10.1007/978-3-319-08708-5oked into different deep learning models and compared their model performances in using various types of drones and different environmental conditions during data gathering. Topics on plant monitoring include pest infiltration, plant growth, fruit conditions, weed invasion, etc. While topics on anim
13#
發(fā)表于 2025-3-23 22:05:09 | 只看該作者
14#
發(fā)表于 2025-3-23 23:21:06 | 只看該作者
Fallacies Arising from Ambiguityeach tool‘s role, an easy management loop is designed and implemented. Then propose a hybrid charging system between PV and WR and then used an intelligent power distribution system. Then, Matlab/Simulink software is used to simulate the energetic performance of an electric vehicle with this hybrid
15#
發(fā)表于 2025-3-24 03:58:03 | 只看該作者
Fallacies Arising from Ambiguitypresent chapter discusses three important methods to improve the quality of service (QoS) and quality of experience (QoE) parameters of the robotic and autonomous vehicle applications. The first one is consistency-guaranteed and collision-resistant approach that can be used by the advanced sensor de
16#
發(fā)表于 2025-3-24 06:35:46 | 只看該作者
Efficient Machine Learning of Mobile Robotic Systems Based on Convolutional Neural Networks, different CNN models (i.e., structures and parameters) are trained, validated, and tested on real-world image data gathered by a mobile robot’s stereo vision system. The best performing CNN models based on two criteria—the number of frames per second and mean intersection over union are implemented
17#
發(fā)表于 2025-3-24 11:53:41 | 只看該作者
UAV Path Planning Based on Deep Reinforcement Learning,er proposes an improved DQN algorithm combined with artificial potential fields, establishing a reward function to evaluate the behavior of UAV, which could guide the UAV to reach the target point as soon as possible under the premise of avoiding obstacles. The network structure, state space, action
18#
發(fā)表于 2025-3-24 16:42:15 | 只看該作者
,Drone Shadow Cloud: A New Concept to?Protect Individuals from Danger Sun Exposure in GCC Countries,the sun’s rays. This chapter presents a new concept to protect construction workers from dangerous sun exposure in hot temperatures. The fly umbrella drone with a UV-blocker fabric canopy provides a stable shaded area. The solution minimizes heat stress and protects them from UV rays when working ou
19#
發(fā)表于 2025-3-24 20:21:45 | 只看該作者
20#
發(fā)表于 2025-3-25 00:46:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 06:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴文县| 丘北县| 望城县| 西乌珠穆沁旗| 鹤峰县| 米易县| 云浮市| 蒙城县| 乌兰浩特市| 云南省| 平和县| 育儿| 寻乌县| 祥云县| 水富县| 佛教| 哈巴河县| 武清区| 运城市| 顺义区| 永德县| 襄樊市| 甘泉县| 盘山县| 唐山市| 江都市| 随州市| 神农架林区| 铜山县| 富蕴县| 金湖县| 仲巴县| 嘉禾县| 北京市| 内乡县| 师宗县| 广宗县| 白山市| 华宁县| 巨鹿县| 龙岩市|