找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence for Materials Science; Yuan Cheng,Tian Wang,Gang Zhang Book 2021 The Editor(s) (if applicable) and The Author(s),

[復(fù)制鏈接]
查看: 39813|回復(fù): 41
樓主
發(fā)表于 2025-3-21 16:34:35 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Artificial Intelligence for Materials Science
影響因子2023Yuan Cheng,Tian Wang,Gang Zhang
視頻videohttp://file.papertrans.cn/163/162386/162386.mp4
發(fā)行地址Presents fundamental information about AI principles and algorithms.Describes the most important and commonly adopted analytical methods in computational material science.Features applications of mach
學(xué)科分類Springer Series in Materials Science
圖書封面Titlebook: Artificial Intelligence for Materials Science;  Yuan Cheng,Tian Wang,Gang Zhang Book 2021 The Editor(s) (if applicable) and The Author(s),
影響因子.Machine learning methods have lowered the cost of exploring new structures of unknown compounds, and can be used to predict reasonable expectations and subsequently validated by experimental results. As new insights and several elaborative tools have been developed for materials science and engineering in recent years, it is an appropriate time to present a book covering recent progress in this field..Searchable and interactive databases can promote research on emerging materials. Recently, databases containing a large number of high-quality materials properties for new advanced materials discovery have been developed. These approaches are set to make a significant impact on human life and, with numerous commercial developments emerging, will become a major academic topic in the coming years.?..This authoritative and comprehensive book will be of interest to both existing researchers in this field as well as others in the materials science community who wish to take advantage of these powerful techniques. The book offers a global spread of authors, from USA, Canada, UK, Japan, France, Russia, China and Singapore, who are all world recognized experts in their separate areas. With c
Pindex Book 2021
The information of publication is updating

書目名稱Artificial Intelligence for Materials Science影響因子(影響力)




書目名稱Artificial Intelligence for Materials Science影響因子(影響力)學(xué)科排名




書目名稱Artificial Intelligence for Materials Science網(wǎng)絡(luò)公開度




書目名稱Artificial Intelligence for Materials Science網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Artificial Intelligence for Materials Science被引頻次




書目名稱Artificial Intelligence for Materials Science被引頻次學(xué)科排名




書目名稱Artificial Intelligence for Materials Science年度引用




書目名稱Artificial Intelligence for Materials Science年度引用學(xué)科排名




書目名稱Artificial Intelligence for Materials Science讀者反饋




書目名稱Artificial Intelligence for Materials Science讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:30:16 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:04:37 | 只看該作者
Accelerated Discovery of Thermoelectric Materials Using Machine Learning,s, which has accelerated the discovery of highly efficient thermoelectric materials. Details of commonly used strategies and methods to select a relevant descriptor set for developing the prediction models will be covered. A new approach for selecting descriptors by analyzing the high-throughput pro
地板
發(fā)表于 2025-3-22 06:57:27 | 只看該作者
5#
發(fā)表于 2025-3-22 12:34:10 | 只看該作者
6#
發(fā)表于 2025-3-22 15:23:03 | 只看該作者
Status quo 2015 – Rahmenbedingungenxpensive, highly efficient, and easily transferable, have been employed to accelerate HEA development. This chapter will give an overview of HEAs (fundamentals, preparations, and properties) and introduce recent progress in ML-assisted design of HEAs (microstructure and property predictions).
7#
發(fā)表于 2025-3-22 18:38:39 | 只看該作者
8#
發(fā)表于 2025-3-22 22:04:37 | 只看該作者
9#
發(fā)表于 2025-3-23 02:42:09 | 只看該作者
Tote Zonen in den Meeren – der P/N-Kreislauf, this chapter will introduce well-established ML models widely used in perovskite-related studies from both the construction of data and material representation aspects. The approaches of data sets will be discussed including the high-throughput (HT) computations and experimentations. The material
10#
發(fā)表于 2025-3-23 09:32:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 14:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新泰市| 左云县| 张掖市| 临澧县| 龙口市| 互助| 临朐县| 石河子市| 将乐县| 庆元县| 枝江市| 罗定市| 伽师县| 恭城| 阿坝| 贵定县| 大竹县| 德钦县| 沧州市| 高清| 曲松县| 贵定县| 横峰县| 通河县| 股票| 筠连县| 郯城县| 吉木乃县| 蓝田县| 舒兰市| 富宁县| 泸溪县| 凉城县| 珠海市| 马公市| 缙云县| 永德县| 江油市| 镇原县| 芮城县| 砀山县|