找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence for Edge Computing; Mudhakar Srivatsa,Tarek Abdelzaher,Ting He Book 2023 The Editor(s) (if applicable) and The Aut

[復(fù)制鏈接]
樓主: sustained
41#
發(fā)表于 2025-3-28 17:13:12 | 只看該作者
Termination and Well-Foundedness,d resources of edge devices. Many traditional AI models are designed for large-scale cloud environments with ample GPUs. The computational environment at the edge is substantially different. Specifically, it is much more resource-constrained. Fortunately, often edge applications are also more restri
42#
發(fā)表于 2025-3-28 20:27:07 | 只看該作者
https://doi.org/10.1007/978-3-658-12163-1al approaches have been proposed to mitigate this issue, using gradient compression and infrequent communication based techniques. This chapter summarizes two communication efficient algorithms, . and ., for . and . settings, respectively. These algorithms utilize . sparsification and quantization o
43#
發(fā)表于 2025-3-29 00:48:14 | 只看該作者
Warum sollten Sie dieses Buch lesen?,ditional data compression schemes that aim at supporting the reconstruction of the original data, here the compression only needs to support the learning of the models that need to be learned from the original data, in order to support AI applications in a bandwidth-limited edge network. This lowere
44#
發(fā)表于 2025-3-29 06:00:25 | 只看該作者
45#
發(fā)表于 2025-3-29 08:04:06 | 只看該作者
46#
發(fā)表于 2025-3-29 14:50:10 | 只看該作者
https://doi.org/10.1007/978-94-011-0131-8ms. To have the maximum applicability, the machine learning workloads will be simply modeled as demands for various types of resources (storage, communication, computation), and the resource allocation algorithms are designed to optimally satisfy these demands within the limited resource capacities
47#
發(fā)表于 2025-3-29 17:43:49 | 只看該作者
https://doi.org/10.1007/978-3-319-12799-6, for running DNN-based perception models in real time on resource-constraint edge platforms to process the sensing data stream (i.e., sequence of image frames). Mainstream machine inference frameworks commonly adopt a simple First-in-First-out (FIFO) policy to process the perceived images in a holi
48#
發(fā)表于 2025-3-29 20:44:26 | 只看該作者
49#
發(fā)表于 2025-3-30 02:57:07 | 只看該作者
50#
發(fā)表于 2025-3-30 05:09:20 | 只看該作者
http://image.papertrans.cn/b/image/162366.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-3 11:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
恩施市| 玉门市| 镇巴县| 军事| 诸暨市| 塔河县| 牟定县| 陕西省| 许昌县| 甘肃省| 新密市| 云南省| 紫云| 海兴县| 通许县| 盐亭县| 同德县| 定兴县| 右玉县| 集贤县| 林西县| 滕州市| 当涂县| 长治县| 卓资县| 湾仔区| 毕节市| 乐陵市| 岢岚县| 溧水县| 鄂伦春自治旗| 祁连县| 永川市| 房山区| 蕲春县| 隆尧县| 公安县| 阿坝县| 鄂托克旗| 萨嘎县| 洮南市|