找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence for Cyber-Physical Systems Hardening; Issa Traore,Isaac Woungang,Sherif Saad Book 2023 The Editor(s) (if applicabl

[復(fù)制鏈接]
樓主: Orthosis
11#
發(fā)表于 2025-3-23 09:57:11 | 只看該作者
Space: Exclusion and Engagement, cyber-attacks in CPSs, this chapter outlines the roles of DL and Deep Reinforcement Learning (DRL). Also, we present state-of-the-art solutions without sacrificing technical details. Additionally, we describe common datasets used for DL in CPSs. Finally, we express research opportunities and challenges in the CPSs with respect to DL.
12#
發(fā)表于 2025-3-23 17:02:14 | 只看該作者
13#
發(fā)表于 2025-3-23 19:44:36 | 只看該作者
2731-5002 g software, hardware, firmware, infrastructure, and communic.This book presents advances in security assurance for cyber-physical systems (CPS) and report on new machine learning (ML) and artificial intelligence (AI) approaches and technologies developed by the research community and the industry to
14#
發(fā)表于 2025-3-23 22:47:40 | 只看該作者
15#
發(fā)表于 2025-3-24 03:43:21 | 只看該作者
Raymond D. Hill,Franco Modigliani be difficult to capture using traditional approaches. The current chapter focuses on defining the model elements and the underlying graph construction algorithms, and presents a case study based on a cyberphysical security dataset.
16#
發(fā)表于 2025-3-24 06:30:33 | 只看該作者
17#
發(fā)表于 2025-3-24 12:47:57 | 只看該作者
,Activity and?Event Network Graph and?Application to?Cyber-Physical Security, be difficult to capture using traditional approaches. The current chapter focuses on defining the model elements and the underlying graph construction algorithms, and presents a case study based on a cyberphysical security dataset.
18#
發(fā)表于 2025-3-24 17:09:33 | 只看該作者
19#
發(fā)表于 2025-3-24 22:48:53 | 只看該作者
20#
發(fā)表于 2025-3-25 01:37:38 | 只看該作者
https://doi.org/10.1007/978-94-015-7753-3We evaluate our approach with a publicly available dataset collected in a real-time medical cyber-physical system testbed network and the results show the proposed approach successfully detects malicious attacks with a high detection rate and an acceptable low false alarm rate.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 00:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
璧山县| 镇康县| 怀远县| 安溪县| 咸宁市| 公安县| 石家庄市| 九龙坡区| 斗六市| 彭水| 翁源县| 将乐县| 垦利县| 邵阳县| 个旧市| 兴文县| 耒阳市| 始兴县| 莱州市| 吉木乃县| 蓝田县| 太白县| 福州市| 德惠市| 屯门区| 咸丰县| 武功县| 和林格尔县| 益阳市| 清河县| 衡阳市| 永寿县| 金门县| 新密市| 灵石县| 彭泽县| 沁阳市| 申扎县| 花莲市| 玛纳斯县| 邓州市|