找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence for Cyber Security: Methods, Issues and Possible Horizons or Opportunities; Sanjay Misra,Amit Kumar Tyagi Book 202

[復制鏈接]
查看: 6625|回復: 55
樓主
發(fā)表于 2025-3-21 16:08:11 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Artificial Intelligence for Cyber Security: Methods, Issues and Possible Horizons or Opportunities
影響因子2023Sanjay Misra,Amit Kumar Tyagi
視頻videohttp://file.papertrans.cn/163/162362/162362.mp4
發(fā)行地址Presents recent research on Artificial Intelligence for Cyber Security.Conducts analyses, implementation, and discussion of many tools of Artificial Intelligence, Machine Learning, Deep Learning, and
學科分類Studies in Computational Intelligence
圖書封面Titlebook: Artificial Intelligence for Cyber Security: Methods, Issues and Possible Horizons or Opportunities;  Sanjay Misra,Amit Kumar Tyagi Book 202
影響因子.This book provides stepwise discussion, exhaustive literature review, detailed analysis and discussion, rigorous experimentation results (using several analytics tools), and an application-oriented approach that can be demonstrated with respect to data analytics using artificial intelligence to make systems stronger (i.e., impossible to breach). We can see many serious cyber breaches on Government databases or public profiles at online social networking in the recent decade. Today artificial intelligence or machine learning is redefining every aspect of cyber security. From improving organizations’ ability to anticipate and thwart breaches, protecting the proliferating number of threat surfaces with Zero Trust Security frameworks to making passwords obsolete, AI and machine learning are essential to securing the perimeters of any business. The book is useful for researchers, academics, industry players, data engineers, data scientists, governmental organizations, and non-governmental organizations..
Pindex Book 2021
The information of publication is updating

書目名稱Artificial Intelligence for Cyber Security: Methods, Issues and Possible Horizons or Opportunities影響因子(影響力)




書目名稱Artificial Intelligence for Cyber Security: Methods, Issues and Possible Horizons or Opportunities影響因子(影響力)學科排名




書目名稱Artificial Intelligence for Cyber Security: Methods, Issues and Possible Horizons or Opportunities網(wǎng)絡公開度




書目名稱Artificial Intelligence for Cyber Security: Methods, Issues and Possible Horizons or Opportunities網(wǎng)絡公開度學科排名




書目名稱Artificial Intelligence for Cyber Security: Methods, Issues and Possible Horizons or Opportunities被引頻次




書目名稱Artificial Intelligence for Cyber Security: Methods, Issues and Possible Horizons or Opportunities被引頻次學科排名




書目名稱Artificial Intelligence for Cyber Security: Methods, Issues and Possible Horizons or Opportunities年度引用




書目名稱Artificial Intelligence for Cyber Security: Methods, Issues and Possible Horizons or Opportunities年度引用學科排名




書目名稱Artificial Intelligence for Cyber Security: Methods, Issues and Possible Horizons or Opportunities讀者反饋




書目名稱Artificial Intelligence for Cyber Security: Methods, Issues and Possible Horizons or Opportunities讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:35:48 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:09:40 | 只看該作者
https://doi.org/10.1007/978-3-031-34013-0mages are then matched (one-to-many) against feature points extracted from real fingerprint images using the BOZORTH3 algorithm. This is done in order to appraise the GANs ability to generate data points with features that generalize beyond the precise domain of the training datasets features. The r
地板
發(fā)表于 2025-3-22 06:37:28 | 只看該作者
,Epilogue: “Becomes a Student”,ing the good classification of the sampled data; the prediction rate is 94.2% for the CRQ-J48. The ROC curve for the na?ve Bayes classifier performs its best when the data is at 80% and performs worse when at 10%. Similarly, the J48 performs best when the data is at 85–90% and worse between 5 and 10
5#
發(fā)表于 2025-3-22 10:42:33 | 只看該作者
6#
發(fā)表于 2025-3-22 14:12:56 | 只看該作者
7#
發(fā)表于 2025-3-22 19:08:32 | 只看該作者
8#
發(fā)表于 2025-3-22 21:12:59 | 只看該作者
The Nature of Galaxies and Galaxy Clustersgree and mutual friend attack. (2) Differential privacy technique for node degree publishing. This chapter includes detailed discussion of these privacy preservation techniques. The proposed clustering approach is based on Machine Learning concepts. The graph topological properties are considered as
9#
發(fā)表于 2025-3-23 03:19:49 | 只看該作者
The Nature of Galaxies and Galaxy Clusterss achieved through heatmaps, scroll maps, attention maps, and keyloggers. Then the data has been converted into text and it is stored in the database. The obtained data has been obfuscated and given for futher process. This is achieved through an AI tool called Delphix. Also this chapter gives an ov
10#
發(fā)表于 2025-3-23 06:58:36 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-4 23:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
三门峡市| 裕民县| 辰溪县| 兴安盟| 沂源县| 化隆| 鄂伦春自治旗| 象州县| 大竹县| 仁寿县| 张家界市| 元氏县| 黄平县| 乌兰察布市| 盐池县| 社旗县| 长子县| 荣昌县| 锦州市| 镇雄县| 河西区| 樟树市| 白银市| 海兴县| 林州市| 绵竹市| 久治县| 泊头市| 武威市| 西贡区| 马边| 巨野县| 玉屏| 徐水县| 江门市| 临潭县| 于田县| 出国| 香港| 时尚| 旅游|