找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence for Communications and Networks; First EAI Internatio Shuai Han,Liang Ye,Weixiao Meng Conference proceedings 2019 I

[復(fù)制鏈接]
樓主: legerdemain
11#
發(fā)表于 2025-3-23 13:44:20 | 只看該作者
Millimeter Wave Massive MIMO Channel Estimation and Trackingrical results show that the performance can be considerably improved in the case of a large number of antennas over the conventional scheme. Furthermore, this algorithm also has better performance under traditional MIMO conditions.
12#
發(fā)表于 2025-3-23 16:11:11 | 只看該作者
13#
發(fā)表于 2025-3-23 18:22:35 | 只看該作者
Design of Radar-Communication Integrated Signal Based on OFDMs consistent with the communication OFDM signal. The degree of system integration is high, and it achieves communication functions without reducing radar detection capability. For the high PAPR problem, we introduce CE-OFDM signals, and derive a radar signal processing algorithm based on FFT demodul
14#
發(fā)表于 2025-3-24 01:42:27 | 只看該作者
A Multicast Beamforming Algorithm to Improve the Performance of Group Service for Multicell B-TrunC up users, is obtained on the basis of semidefinite relaxation (SDR). Theoretical analysis and simulation results show that the proposed multicast beamforming algorithm based on same-frequency multicell coordination can significantly improve the SNR of cell-edge users and increase the group user chan
15#
發(fā)表于 2025-3-24 06:15:55 | 只看該作者
Neural Networks in Hybrid Precoding for Millimeter Wave Massive MIMO Systemson results indicate that there is an optimal number of users which can minimize the performance deterioration. Moreover, the simulation results also show that slight deterioration in the throughput and energy efficiency of mmWave massive MIMO systems is caused by further decomposing the baseband pre
16#
發(fā)表于 2025-3-24 09:53:15 | 只看該作者
17#
發(fā)表于 2025-3-24 11:06:09 | 只看該作者
A New Two-Microphone Reduce Size SMFTF Algorithm for Speech Enhancement in New Telecommunication SysTM-RSMFTF algorithm in comparison with conventional TM-NLMS algorithm and almost similar performances with full-size TM-SFTF in terms of various objectives criteria such as Segmental SNR, System Mismatch, Segmental MSE.
18#
發(fā)表于 2025-3-24 17:26:30 | 只看該作者
1867-8211 lligence for Communications and Networks, AICON 2019, held in Harbin, China, in May 2019. The 93 full papers were carefully reviewed and selected from 152 submissions. The papers are organized in topical sections on artificial intelligence, mobile network, deep learning, machine learning, wireless c
19#
發(fā)表于 2025-3-24 21:46:51 | 只看該作者
Fahrzeugreifen und Fahrwerkentwicklung fully shared decoder) to jointly predict target word and POS tag sequences. Experiments on Chinese-English and German-English translation tasks show that the fully shared decoder can acquire the best performance, which increases the BLEU score by 1.4 and 2.25 points respectively compared with the attention-based NMT model.
20#
發(fā)表于 2025-3-25 02:29:52 | 只看該作者
Fahrzeugreifen und Fahrwerkentwicklungalso presented to generate a single-maximum beampattern. Simulation results verify the effectiveness. It shows that the proposed approach outperforms the multiple-input multiple-output (MIMO) radar in focusing the transmit energy on the far-field targets.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 08:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
枣强县| 潢川县| 巨野县| 洪泽县| 濮阳市| 井陉县| 株洲市| 南雄市| 邯郸县| 葫芦岛市| 凤冈县| 格尔木市| 张掖市| 红原县| 潼南县| 自贡市| 木兰县| 临沧市| 叙永县| 玛纳斯县| 雷州市| 华池县| 延吉市| 乃东县| 云和县| 名山县| 黄骅市| 永修县| 雅安市| 子洲县| 林甸县| 浠水县| 龙川县| 通江县| 榕江县| 闵行区| 安阳市| 英山县| 竹山县| 沈阳市| 益阳市|